This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A sequence of functions converges uniformly iff it is uniformly Cauchy, which is to say that for every 0 < x there is a j such that for all j <_ k , m the functions F ( k ) and F ( m ) are uniformly within x of each other on S . (Contributed by Mario Carneiro, 1-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ulmcau.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| ulmcau.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| ulmcau.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | ||
| ulmcau.f | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) | ||
| Assertion | ulmcau2 | ⊢ ( 𝜑 → ( 𝐹 ∈ dom ( ⇝𝑢 ‘ 𝑆 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ulmcau.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | ulmcau.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | ulmcau.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | |
| 4 | ulmcau.f | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) | |
| 5 | 1 2 3 4 | ulmcau | ⊢ ( 𝜑 → ( 𝐹 ∈ dom ( ⇝𝑢 ‘ 𝑆 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 6 | 1 2 3 4 | ulmcaulem | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 7 | 5 6 | bitrd | ⊢ ( 𝜑 → ( 𝐹 ∈ dom ( ⇝𝑢 ‘ 𝑆 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |