This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extend an infinite group sum by padding outside with zeroes. (Contributed by Mario Carneiro, 18-Sep-2015) (Revised by AV, 25-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tsmsres.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| tsmsres.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| tsmsres.1 | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | ||
| tsmsres.2 | ⊢ ( 𝜑 → 𝐺 ∈ TopSp ) | ||
| tsmsres.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| tsmsres.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | ||
| tsmsres.s | ⊢ ( 𝜑 → ( 𝐹 supp 0 ) ⊆ 𝑊 ) | ||
| Assertion | tsmsres | ⊢ ( 𝜑 → ( 𝐺 tsums ( 𝐹 ↾ 𝑊 ) ) = ( 𝐺 tsums 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tsmsres.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | tsmsres.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | tsmsres.1 | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | |
| 4 | tsmsres.2 | ⊢ ( 𝜑 → 𝐺 ∈ TopSp ) | |
| 5 | tsmsres.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 6 | tsmsres.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 7 | tsmsres.s | ⊢ ( 𝜑 → ( 𝐹 supp 0 ) ⊆ 𝑊 ) | |
| 8 | inss1 | ⊢ ( 𝐴 ∩ 𝑊 ) ⊆ 𝐴 | |
| 9 | 8 | sspwi | ⊢ 𝒫 ( 𝐴 ∩ 𝑊 ) ⊆ 𝒫 𝐴 |
| 10 | ssrin | ⊢ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ⊆ 𝒫 𝐴 → ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ⊆ ( 𝒫 𝐴 ∩ Fin ) ) | |
| 11 | 9 10 | ax-mp | ⊢ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ⊆ ( 𝒫 𝐴 ∩ Fin ) |
| 12 | simpr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ) → 𝑎 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ) | |
| 13 | 11 12 | sselid | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ) → 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ) |
| 14 | elfpw | ⊢ ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ↔ ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ∈ Fin ) ) | |
| 15 | 14 | simplbi | ⊢ ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝑧 ⊆ 𝐴 ) |
| 16 | 15 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ) ∧ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝑧 ⊆ 𝐴 ) |
| 17 | 16 | ssrind | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ) ∧ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝑧 ∩ 𝑊 ) ⊆ ( 𝐴 ∩ 𝑊 ) ) |
| 18 | elinel2 | ⊢ ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝑧 ∈ Fin ) | |
| 19 | 18 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ) ∧ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝑧 ∈ Fin ) |
| 20 | inss1 | ⊢ ( 𝑧 ∩ 𝑊 ) ⊆ 𝑧 | |
| 21 | ssfi | ⊢ ( ( 𝑧 ∈ Fin ∧ ( 𝑧 ∩ 𝑊 ) ⊆ 𝑧 ) → ( 𝑧 ∩ 𝑊 ) ∈ Fin ) | |
| 22 | 19 20 21 | sylancl | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ) ∧ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝑧 ∩ 𝑊 ) ∈ Fin ) |
| 23 | elfpw | ⊢ ( ( 𝑧 ∩ 𝑊 ) ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ↔ ( ( 𝑧 ∩ 𝑊 ) ⊆ ( 𝐴 ∩ 𝑊 ) ∧ ( 𝑧 ∩ 𝑊 ) ∈ Fin ) ) | |
| 24 | 17 22 23 | sylanbrc | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ) ∧ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝑧 ∩ 𝑊 ) ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ) |
| 25 | sseq2 | ⊢ ( 𝑏 = ( 𝑧 ∩ 𝑊 ) → ( 𝑎 ⊆ 𝑏 ↔ 𝑎 ⊆ ( 𝑧 ∩ 𝑊 ) ) ) | |
| 26 | ssin | ⊢ ( ( 𝑎 ⊆ 𝑧 ∧ 𝑎 ⊆ 𝑊 ) ↔ 𝑎 ⊆ ( 𝑧 ∩ 𝑊 ) ) | |
| 27 | 25 26 | bitr4di | ⊢ ( 𝑏 = ( 𝑧 ∩ 𝑊 ) → ( 𝑎 ⊆ 𝑏 ↔ ( 𝑎 ⊆ 𝑧 ∧ 𝑎 ⊆ 𝑊 ) ) ) |
| 28 | reseq2 | ⊢ ( 𝑏 = ( 𝑧 ∩ 𝑊 ) → ( ( 𝐹 ↾ 𝑊 ) ↾ 𝑏 ) = ( ( 𝐹 ↾ 𝑊 ) ↾ ( 𝑧 ∩ 𝑊 ) ) ) | |
| 29 | inss2 | ⊢ ( 𝑧 ∩ 𝑊 ) ⊆ 𝑊 | |
| 30 | resabs1 | ⊢ ( ( 𝑧 ∩ 𝑊 ) ⊆ 𝑊 → ( ( 𝐹 ↾ 𝑊 ) ↾ ( 𝑧 ∩ 𝑊 ) ) = ( 𝐹 ↾ ( 𝑧 ∩ 𝑊 ) ) ) | |
| 31 | 29 30 | ax-mp | ⊢ ( ( 𝐹 ↾ 𝑊 ) ↾ ( 𝑧 ∩ 𝑊 ) ) = ( 𝐹 ↾ ( 𝑧 ∩ 𝑊 ) ) |
| 32 | 28 31 | eqtrdi | ⊢ ( 𝑏 = ( 𝑧 ∩ 𝑊 ) → ( ( 𝐹 ↾ 𝑊 ) ↾ 𝑏 ) = ( 𝐹 ↾ ( 𝑧 ∩ 𝑊 ) ) ) |
| 33 | 32 | oveq2d | ⊢ ( 𝑏 = ( 𝑧 ∩ 𝑊 ) → ( 𝐺 Σg ( ( 𝐹 ↾ 𝑊 ) ↾ 𝑏 ) ) = ( 𝐺 Σg ( 𝐹 ↾ ( 𝑧 ∩ 𝑊 ) ) ) ) |
| 34 | 33 | eleq1d | ⊢ ( 𝑏 = ( 𝑧 ∩ 𝑊 ) → ( ( 𝐺 Σg ( ( 𝐹 ↾ 𝑊 ) ↾ 𝑏 ) ) ∈ 𝑢 ↔ ( 𝐺 Σg ( 𝐹 ↾ ( 𝑧 ∩ 𝑊 ) ) ) ∈ 𝑢 ) ) |
| 35 | 27 34 | imbi12d | ⊢ ( 𝑏 = ( 𝑧 ∩ 𝑊 ) → ( ( 𝑎 ⊆ 𝑏 → ( 𝐺 Σg ( ( 𝐹 ↾ 𝑊 ) ↾ 𝑏 ) ) ∈ 𝑢 ) ↔ ( ( 𝑎 ⊆ 𝑧 ∧ 𝑎 ⊆ 𝑊 ) → ( 𝐺 Σg ( 𝐹 ↾ ( 𝑧 ∩ 𝑊 ) ) ) ∈ 𝑢 ) ) ) |
| 36 | 35 | rspcv | ⊢ ( ( 𝑧 ∩ 𝑊 ) ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) → ( ∀ 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ( 𝑎 ⊆ 𝑏 → ( 𝐺 Σg ( ( 𝐹 ↾ 𝑊 ) ↾ 𝑏 ) ) ∈ 𝑢 ) → ( ( 𝑎 ⊆ 𝑧 ∧ 𝑎 ⊆ 𝑊 ) → ( 𝐺 Σg ( 𝐹 ↾ ( 𝑧 ∩ 𝑊 ) ) ) ∈ 𝑢 ) ) ) |
| 37 | 24 36 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ) ∧ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ∀ 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ( 𝑎 ⊆ 𝑏 → ( 𝐺 Σg ( ( 𝐹 ↾ 𝑊 ) ↾ 𝑏 ) ) ∈ 𝑢 ) → ( ( 𝑎 ⊆ 𝑧 ∧ 𝑎 ⊆ 𝑊 ) → ( 𝐺 Σg ( 𝐹 ↾ ( 𝑧 ∩ 𝑊 ) ) ) ∈ 𝑢 ) ) ) |
| 38 | elfpw | ⊢ ( 𝑎 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ↔ ( 𝑎 ⊆ ( 𝐴 ∩ 𝑊 ) ∧ 𝑎 ∈ Fin ) ) | |
| 39 | 38 | simplbi | ⊢ ( 𝑎 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) → 𝑎 ⊆ ( 𝐴 ∩ 𝑊 ) ) |
| 40 | 39 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ) ∧ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝑎 ⊆ ( 𝐴 ∩ 𝑊 ) ) |
| 41 | inss2 | ⊢ ( 𝐴 ∩ 𝑊 ) ⊆ 𝑊 | |
| 42 | 40 41 | sstrdi | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ) ∧ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝑎 ⊆ 𝑊 ) |
| 43 | 42 | biantrud | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ) ∧ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝑎 ⊆ 𝑧 ↔ ( 𝑎 ⊆ 𝑧 ∧ 𝑎 ⊆ 𝑊 ) ) ) |
| 44 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ) ∧ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝐺 ∈ CMnd ) |
| 45 | 6 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ) ∧ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 46 | 45 16 | fssresd | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ) ∧ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐹 ↾ 𝑧 ) : 𝑧 ⟶ 𝐵 ) |
| 47 | 6 5 | fexd | ⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 48 | 47 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ) ∧ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝐹 ∈ V ) |
| 49 | 2 | fvexi | ⊢ 0 ∈ V |
| 50 | ressuppss | ⊢ ( ( 𝐹 ∈ V ∧ 0 ∈ V ) → ( ( 𝐹 ↾ 𝑧 ) supp 0 ) ⊆ ( 𝐹 supp 0 ) ) | |
| 51 | 48 49 50 | sylancl | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ) ∧ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ( 𝐹 ↾ 𝑧 ) supp 0 ) ⊆ ( 𝐹 supp 0 ) ) |
| 52 | 7 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ) ∧ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐹 supp 0 ) ⊆ 𝑊 ) |
| 53 | 51 52 | sstrd | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ) ∧ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ( 𝐹 ↾ 𝑧 ) supp 0 ) ⊆ 𝑊 ) |
| 54 | 49 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ) ∧ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 0 ∈ V ) |
| 55 | 46 19 54 | fdmfifsupp | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ) ∧ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐹 ↾ 𝑧 ) finSupp 0 ) |
| 56 | 1 2 44 19 46 53 55 | gsumres | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ) ∧ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐺 Σg ( ( 𝐹 ↾ 𝑧 ) ↾ 𝑊 ) ) = ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ) |
| 57 | resres | ⊢ ( ( 𝐹 ↾ 𝑧 ) ↾ 𝑊 ) = ( 𝐹 ↾ ( 𝑧 ∩ 𝑊 ) ) | |
| 58 | 57 | oveq2i | ⊢ ( 𝐺 Σg ( ( 𝐹 ↾ 𝑧 ) ↾ 𝑊 ) ) = ( 𝐺 Σg ( 𝐹 ↾ ( 𝑧 ∩ 𝑊 ) ) ) |
| 59 | 56 58 | eqtr3di | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ) ∧ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) = ( 𝐺 Σg ( 𝐹 ↾ ( 𝑧 ∩ 𝑊 ) ) ) ) |
| 60 | 59 | eleq1d | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ) ∧ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ↔ ( 𝐺 Σg ( 𝐹 ↾ ( 𝑧 ∩ 𝑊 ) ) ) ∈ 𝑢 ) ) |
| 61 | 43 60 | imbi12d | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ) ∧ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ( 𝑎 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ↔ ( ( 𝑎 ⊆ 𝑧 ∧ 𝑎 ⊆ 𝑊 ) → ( 𝐺 Σg ( 𝐹 ↾ ( 𝑧 ∩ 𝑊 ) ) ) ∈ 𝑢 ) ) ) |
| 62 | 37 61 | sylibrd | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ) ∧ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ∀ 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ( 𝑎 ⊆ 𝑏 → ( 𝐺 Σg ( ( 𝐹 ↾ 𝑊 ) ↾ 𝑏 ) ) ∈ 𝑢 ) → ( 𝑎 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ) ) |
| 63 | 62 | ralrimdva | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ) → ( ∀ 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ( 𝑎 ⊆ 𝑏 → ( 𝐺 Σg ( ( 𝐹 ↾ 𝑊 ) ↾ 𝑏 ) ) ∈ 𝑢 ) → ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑎 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ) ) |
| 64 | sseq1 | ⊢ ( 𝑦 = 𝑎 → ( 𝑦 ⊆ 𝑧 ↔ 𝑎 ⊆ 𝑧 ) ) | |
| 65 | 64 | rspceaimv | ⊢ ( ( 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑎 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ) → ∃ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ) |
| 66 | 13 63 65 | syl6an | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ) → ( ∀ 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ( 𝑎 ⊆ 𝑏 → ( 𝐺 Σg ( ( 𝐹 ↾ 𝑊 ) ↾ 𝑏 ) ) ∈ 𝑢 ) → ∃ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ) ) |
| 67 | 66 | rexlimdva | ⊢ ( 𝜑 → ( ∃ 𝑎 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ∀ 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ( 𝑎 ⊆ 𝑏 → ( 𝐺 Σg ( ( 𝐹 ↾ 𝑊 ) ↾ 𝑏 ) ) ∈ 𝑢 ) → ∃ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ) ) |
| 68 | elfpw | ⊢ ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↔ ( 𝑦 ⊆ 𝐴 ∧ 𝑦 ∈ Fin ) ) | |
| 69 | 68 | simplbi | ⊢ ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝑦 ⊆ 𝐴 ) |
| 70 | 69 | adantl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝑦 ⊆ 𝐴 ) |
| 71 | 70 | ssrind | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝑦 ∩ 𝑊 ) ⊆ ( 𝐴 ∩ 𝑊 ) ) |
| 72 | elinel2 | ⊢ ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝑦 ∈ Fin ) | |
| 73 | 72 | adantl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝑦 ∈ Fin ) |
| 74 | inss1 | ⊢ ( 𝑦 ∩ 𝑊 ) ⊆ 𝑦 | |
| 75 | ssfi | ⊢ ( ( 𝑦 ∈ Fin ∧ ( 𝑦 ∩ 𝑊 ) ⊆ 𝑦 ) → ( 𝑦 ∩ 𝑊 ) ∈ Fin ) | |
| 76 | 73 74 75 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝑦 ∩ 𝑊 ) ∈ Fin ) |
| 77 | elfpw | ⊢ ( ( 𝑦 ∩ 𝑊 ) ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ↔ ( ( 𝑦 ∩ 𝑊 ) ⊆ ( 𝐴 ∩ 𝑊 ) ∧ ( 𝑦 ∩ 𝑊 ) ∈ Fin ) ) | |
| 78 | 71 76 77 | sylanbrc | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝑦 ∩ 𝑊 ) ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ) |
| 79 | 69 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ) → 𝑦 ⊆ 𝐴 ) |
| 80 | elfpw | ⊢ ( 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ↔ ( 𝑏 ⊆ ( 𝐴 ∩ 𝑊 ) ∧ 𝑏 ∈ Fin ) ) | |
| 81 | 80 | simplbi | ⊢ ( 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) → 𝑏 ⊆ ( 𝐴 ∩ 𝑊 ) ) |
| 82 | 81 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ) → 𝑏 ⊆ ( 𝐴 ∩ 𝑊 ) ) |
| 83 | 82 8 | sstrdi | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ) → 𝑏 ⊆ 𝐴 ) |
| 84 | 79 83 | unssd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ) → ( 𝑦 ∪ 𝑏 ) ⊆ 𝐴 ) |
| 85 | elinel2 | ⊢ ( 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) → 𝑏 ∈ Fin ) | |
| 86 | unfi | ⊢ ( ( 𝑦 ∈ Fin ∧ 𝑏 ∈ Fin ) → ( 𝑦 ∪ 𝑏 ) ∈ Fin ) | |
| 87 | 73 85 86 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ) → ( 𝑦 ∪ 𝑏 ) ∈ Fin ) |
| 88 | elfpw | ⊢ ( ( 𝑦 ∪ 𝑏 ) ∈ ( 𝒫 𝐴 ∩ Fin ) ↔ ( ( 𝑦 ∪ 𝑏 ) ⊆ 𝐴 ∧ ( 𝑦 ∪ 𝑏 ) ∈ Fin ) ) | |
| 89 | 84 87 88 | sylanbrc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ) → ( 𝑦 ∪ 𝑏 ) ∈ ( 𝒫 𝐴 ∩ Fin ) ) |
| 90 | ssun1 | ⊢ 𝑦 ⊆ ( 𝑦 ∪ 𝑏 ) | |
| 91 | id | ⊢ ( 𝑧 = ( 𝑦 ∪ 𝑏 ) → 𝑧 = ( 𝑦 ∪ 𝑏 ) ) | |
| 92 | 90 91 | sseqtrrid | ⊢ ( 𝑧 = ( 𝑦 ∪ 𝑏 ) → 𝑦 ⊆ 𝑧 ) |
| 93 | pm5.5 | ⊢ ( 𝑦 ⊆ 𝑧 → ( ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ↔ ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ) | |
| 94 | 92 93 | syl | ⊢ ( 𝑧 = ( 𝑦 ∪ 𝑏 ) → ( ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ↔ ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ) |
| 95 | reseq2 | ⊢ ( 𝑧 = ( 𝑦 ∪ 𝑏 ) → ( 𝐹 ↾ 𝑧 ) = ( 𝐹 ↾ ( 𝑦 ∪ 𝑏 ) ) ) | |
| 96 | 95 | oveq2d | ⊢ ( 𝑧 = ( 𝑦 ∪ 𝑏 ) → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) = ( 𝐺 Σg ( 𝐹 ↾ ( 𝑦 ∪ 𝑏 ) ) ) ) |
| 97 | 96 | eleq1d | ⊢ ( 𝑧 = ( 𝑦 ∪ 𝑏 ) → ( ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ↔ ( 𝐺 Σg ( 𝐹 ↾ ( 𝑦 ∪ 𝑏 ) ) ) ∈ 𝑢 ) ) |
| 98 | 94 97 | bitrd | ⊢ ( 𝑧 = ( 𝑦 ∪ 𝑏 ) → ( ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ↔ ( 𝐺 Σg ( 𝐹 ↾ ( 𝑦 ∪ 𝑏 ) ) ) ∈ 𝑢 ) ) |
| 99 | 98 | rspcv | ⊢ ( ( 𝑦 ∪ 𝑏 ) ∈ ( 𝒫 𝐴 ∩ Fin ) → ( ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) → ( 𝐺 Σg ( 𝐹 ↾ ( 𝑦 ∪ 𝑏 ) ) ) ∈ 𝑢 ) ) |
| 100 | 89 99 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ) → ( ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) → ( 𝐺 Σg ( 𝐹 ↾ ( 𝑦 ∪ 𝑏 ) ) ) ∈ 𝑢 ) ) |
| 101 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ ( 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ∧ ( 𝑦 ∩ 𝑊 ) ⊆ 𝑏 ) ) → 𝐺 ∈ CMnd ) |
| 102 | 87 | adantrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ ( 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ∧ ( 𝑦 ∩ 𝑊 ) ⊆ 𝑏 ) ) → ( 𝑦 ∪ 𝑏 ) ∈ Fin ) |
| 103 | 6 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ ( 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ∧ ( 𝑦 ∩ 𝑊 ) ⊆ 𝑏 ) ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 104 | 84 | adantrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ ( 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ∧ ( 𝑦 ∩ 𝑊 ) ⊆ 𝑏 ) ) → ( 𝑦 ∪ 𝑏 ) ⊆ 𝐴 ) |
| 105 | 103 104 | fssresd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ ( 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ∧ ( 𝑦 ∩ 𝑊 ) ⊆ 𝑏 ) ) → ( 𝐹 ↾ ( 𝑦 ∪ 𝑏 ) ) : ( 𝑦 ∪ 𝑏 ) ⟶ 𝐵 ) |
| 106 | 47 49 | jctir | ⊢ ( 𝜑 → ( 𝐹 ∈ V ∧ 0 ∈ V ) ) |
| 107 | 106 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ ( 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ∧ ( 𝑦 ∩ 𝑊 ) ⊆ 𝑏 ) ) → ( 𝐹 ∈ V ∧ 0 ∈ V ) ) |
| 108 | ressuppss | ⊢ ( ( 𝐹 ∈ V ∧ 0 ∈ V ) → ( ( 𝐹 ↾ ( 𝑦 ∪ 𝑏 ) ) supp 0 ) ⊆ ( 𝐹 supp 0 ) ) | |
| 109 | 107 108 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ ( 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ∧ ( 𝑦 ∩ 𝑊 ) ⊆ 𝑏 ) ) → ( ( 𝐹 ↾ ( 𝑦 ∪ 𝑏 ) ) supp 0 ) ⊆ ( 𝐹 supp 0 ) ) |
| 110 | 7 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ ( 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ∧ ( 𝑦 ∩ 𝑊 ) ⊆ 𝑏 ) ) → ( 𝐹 supp 0 ) ⊆ 𝑊 ) |
| 111 | 109 110 | sstrd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ ( 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ∧ ( 𝑦 ∩ 𝑊 ) ⊆ 𝑏 ) ) → ( ( 𝐹 ↾ ( 𝑦 ∪ 𝑏 ) ) supp 0 ) ⊆ 𝑊 ) |
| 112 | 49 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ ( 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ∧ ( 𝑦 ∩ 𝑊 ) ⊆ 𝑏 ) ) → 0 ∈ V ) |
| 113 | 105 102 112 | fdmfifsupp | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ ( 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ∧ ( 𝑦 ∩ 𝑊 ) ⊆ 𝑏 ) ) → ( 𝐹 ↾ ( 𝑦 ∪ 𝑏 ) ) finSupp 0 ) |
| 114 | 1 2 101 102 105 111 113 | gsumres | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ ( 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ∧ ( 𝑦 ∩ 𝑊 ) ⊆ 𝑏 ) ) → ( 𝐺 Σg ( ( 𝐹 ↾ ( 𝑦 ∪ 𝑏 ) ) ↾ 𝑊 ) ) = ( 𝐺 Σg ( 𝐹 ↾ ( 𝑦 ∪ 𝑏 ) ) ) ) |
| 115 | resres | ⊢ ( ( 𝐹 ↾ ( 𝑦 ∪ 𝑏 ) ) ↾ 𝑊 ) = ( 𝐹 ↾ ( ( 𝑦 ∪ 𝑏 ) ∩ 𝑊 ) ) | |
| 116 | indir | ⊢ ( ( 𝑦 ∪ 𝑏 ) ∩ 𝑊 ) = ( ( 𝑦 ∩ 𝑊 ) ∪ ( 𝑏 ∩ 𝑊 ) ) | |
| 117 | 82 41 | sstrdi | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ) → 𝑏 ⊆ 𝑊 ) |
| 118 | 117 | adantrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ ( 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ∧ ( 𝑦 ∩ 𝑊 ) ⊆ 𝑏 ) ) → 𝑏 ⊆ 𝑊 ) |
| 119 | dfss2 | ⊢ ( 𝑏 ⊆ 𝑊 ↔ ( 𝑏 ∩ 𝑊 ) = 𝑏 ) | |
| 120 | 118 119 | sylib | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ ( 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ∧ ( 𝑦 ∩ 𝑊 ) ⊆ 𝑏 ) ) → ( 𝑏 ∩ 𝑊 ) = 𝑏 ) |
| 121 | 120 | uneq2d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ ( 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ∧ ( 𝑦 ∩ 𝑊 ) ⊆ 𝑏 ) ) → ( ( 𝑦 ∩ 𝑊 ) ∪ ( 𝑏 ∩ 𝑊 ) ) = ( ( 𝑦 ∩ 𝑊 ) ∪ 𝑏 ) ) |
| 122 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ ( 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ∧ ( 𝑦 ∩ 𝑊 ) ⊆ 𝑏 ) ) → ( 𝑦 ∩ 𝑊 ) ⊆ 𝑏 ) | |
| 123 | ssequn1 | ⊢ ( ( 𝑦 ∩ 𝑊 ) ⊆ 𝑏 ↔ ( ( 𝑦 ∩ 𝑊 ) ∪ 𝑏 ) = 𝑏 ) | |
| 124 | 122 123 | sylib | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ ( 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ∧ ( 𝑦 ∩ 𝑊 ) ⊆ 𝑏 ) ) → ( ( 𝑦 ∩ 𝑊 ) ∪ 𝑏 ) = 𝑏 ) |
| 125 | 121 124 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ ( 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ∧ ( 𝑦 ∩ 𝑊 ) ⊆ 𝑏 ) ) → ( ( 𝑦 ∩ 𝑊 ) ∪ ( 𝑏 ∩ 𝑊 ) ) = 𝑏 ) |
| 126 | 116 125 | eqtrid | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ ( 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ∧ ( 𝑦 ∩ 𝑊 ) ⊆ 𝑏 ) ) → ( ( 𝑦 ∪ 𝑏 ) ∩ 𝑊 ) = 𝑏 ) |
| 127 | 126 | reseq2d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ ( 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ∧ ( 𝑦 ∩ 𝑊 ) ⊆ 𝑏 ) ) → ( 𝐹 ↾ ( ( 𝑦 ∪ 𝑏 ) ∩ 𝑊 ) ) = ( 𝐹 ↾ 𝑏 ) ) |
| 128 | 115 127 | eqtrid | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ ( 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ∧ ( 𝑦 ∩ 𝑊 ) ⊆ 𝑏 ) ) → ( ( 𝐹 ↾ ( 𝑦 ∪ 𝑏 ) ) ↾ 𝑊 ) = ( 𝐹 ↾ 𝑏 ) ) |
| 129 | 118 | resabs1d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ ( 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ∧ ( 𝑦 ∩ 𝑊 ) ⊆ 𝑏 ) ) → ( ( 𝐹 ↾ 𝑊 ) ↾ 𝑏 ) = ( 𝐹 ↾ 𝑏 ) ) |
| 130 | 128 129 | eqtr4d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ ( 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ∧ ( 𝑦 ∩ 𝑊 ) ⊆ 𝑏 ) ) → ( ( 𝐹 ↾ ( 𝑦 ∪ 𝑏 ) ) ↾ 𝑊 ) = ( ( 𝐹 ↾ 𝑊 ) ↾ 𝑏 ) ) |
| 131 | 130 | oveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ ( 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ∧ ( 𝑦 ∩ 𝑊 ) ⊆ 𝑏 ) ) → ( 𝐺 Σg ( ( 𝐹 ↾ ( 𝑦 ∪ 𝑏 ) ) ↾ 𝑊 ) ) = ( 𝐺 Σg ( ( 𝐹 ↾ 𝑊 ) ↾ 𝑏 ) ) ) |
| 132 | 114 131 | eqtr3d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ ( 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ∧ ( 𝑦 ∩ 𝑊 ) ⊆ 𝑏 ) ) → ( 𝐺 Σg ( 𝐹 ↾ ( 𝑦 ∪ 𝑏 ) ) ) = ( 𝐺 Σg ( ( 𝐹 ↾ 𝑊 ) ↾ 𝑏 ) ) ) |
| 133 | 132 | eleq1d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ ( 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ∧ ( 𝑦 ∩ 𝑊 ) ⊆ 𝑏 ) ) → ( ( 𝐺 Σg ( 𝐹 ↾ ( 𝑦 ∪ 𝑏 ) ) ) ∈ 𝑢 ↔ ( 𝐺 Σg ( ( 𝐹 ↾ 𝑊 ) ↾ 𝑏 ) ) ∈ 𝑢 ) ) |
| 134 | 133 | biimpd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ ( 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ∧ ( 𝑦 ∩ 𝑊 ) ⊆ 𝑏 ) ) → ( ( 𝐺 Σg ( 𝐹 ↾ ( 𝑦 ∪ 𝑏 ) ) ) ∈ 𝑢 → ( 𝐺 Σg ( ( 𝐹 ↾ 𝑊 ) ↾ 𝑏 ) ) ∈ 𝑢 ) ) |
| 135 | 134 | expr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ) → ( ( 𝑦 ∩ 𝑊 ) ⊆ 𝑏 → ( ( 𝐺 Σg ( 𝐹 ↾ ( 𝑦 ∪ 𝑏 ) ) ) ∈ 𝑢 → ( 𝐺 Σg ( ( 𝐹 ↾ 𝑊 ) ↾ 𝑏 ) ) ∈ 𝑢 ) ) ) |
| 136 | 135 | com23 | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ) → ( ( 𝐺 Σg ( 𝐹 ↾ ( 𝑦 ∪ 𝑏 ) ) ) ∈ 𝑢 → ( ( 𝑦 ∩ 𝑊 ) ⊆ 𝑏 → ( 𝐺 Σg ( ( 𝐹 ↾ 𝑊 ) ↾ 𝑏 ) ) ∈ 𝑢 ) ) ) |
| 137 | 100 136 | syld | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ) → ( ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) → ( ( 𝑦 ∩ 𝑊 ) ⊆ 𝑏 → ( 𝐺 Σg ( ( 𝐹 ↾ 𝑊 ) ↾ 𝑏 ) ) ∈ 𝑢 ) ) ) |
| 138 | 137 | ralrimdva | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) → ∀ 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ( ( 𝑦 ∩ 𝑊 ) ⊆ 𝑏 → ( 𝐺 Σg ( ( 𝐹 ↾ 𝑊 ) ↾ 𝑏 ) ) ∈ 𝑢 ) ) ) |
| 139 | sseq1 | ⊢ ( 𝑎 = ( 𝑦 ∩ 𝑊 ) → ( 𝑎 ⊆ 𝑏 ↔ ( 𝑦 ∩ 𝑊 ) ⊆ 𝑏 ) ) | |
| 140 | 139 | rspceaimv | ⊢ ( ( ( 𝑦 ∩ 𝑊 ) ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ∧ ∀ 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ( ( 𝑦 ∩ 𝑊 ) ⊆ 𝑏 → ( 𝐺 Σg ( ( 𝐹 ↾ 𝑊 ) ↾ 𝑏 ) ) ∈ 𝑢 ) ) → ∃ 𝑎 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ∀ 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ( 𝑎 ⊆ 𝑏 → ( 𝐺 Σg ( ( 𝐹 ↾ 𝑊 ) ↾ 𝑏 ) ) ∈ 𝑢 ) ) |
| 141 | 78 138 140 | syl6an | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) → ∃ 𝑎 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ∀ 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ( 𝑎 ⊆ 𝑏 → ( 𝐺 Σg ( ( 𝐹 ↾ 𝑊 ) ↾ 𝑏 ) ) ∈ 𝑢 ) ) ) |
| 142 | 141 | rexlimdva | ⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) → ∃ 𝑎 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ∀ 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ( 𝑎 ⊆ 𝑏 → ( 𝐺 Σg ( ( 𝐹 ↾ 𝑊 ) ↾ 𝑏 ) ) ∈ 𝑢 ) ) ) |
| 143 | 67 142 | impbid | ⊢ ( 𝜑 → ( ∃ 𝑎 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ∀ 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ( 𝑎 ⊆ 𝑏 → ( 𝐺 Σg ( ( 𝐹 ↾ 𝑊 ) ↾ 𝑏 ) ) ∈ 𝑢 ) ↔ ∃ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ) ) |
| 144 | 143 | imbi2d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑢 → ∃ 𝑎 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ∀ 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ( 𝑎 ⊆ 𝑏 → ( 𝐺 Σg ( ( 𝐹 ↾ 𝑊 ) ↾ 𝑏 ) ) ∈ 𝑢 ) ) ↔ ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ) ) ) |
| 145 | 144 | ralbidv | ⊢ ( 𝜑 → ( ∀ 𝑢 ∈ ( TopOpen ‘ 𝐺 ) ( 𝑥 ∈ 𝑢 → ∃ 𝑎 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ∀ 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ( 𝑎 ⊆ 𝑏 → ( 𝐺 Σg ( ( 𝐹 ↾ 𝑊 ) ↾ 𝑏 ) ) ∈ 𝑢 ) ) ↔ ∀ 𝑢 ∈ ( TopOpen ‘ 𝐺 ) ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ) ) ) |
| 146 | 145 | anbi2d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑢 ∈ ( TopOpen ‘ 𝐺 ) ( 𝑥 ∈ 𝑢 → ∃ 𝑎 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ∀ 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ( 𝑎 ⊆ 𝑏 → ( 𝐺 Σg ( ( 𝐹 ↾ 𝑊 ) ↾ 𝑏 ) ) ∈ 𝑢 ) ) ) ↔ ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑢 ∈ ( TopOpen ‘ 𝐺 ) ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ) ) ) ) |
| 147 | eqid | ⊢ ( TopOpen ‘ 𝐺 ) = ( TopOpen ‘ 𝐺 ) | |
| 148 | eqid | ⊢ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) = ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) | |
| 149 | inex1g | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∩ 𝑊 ) ∈ V ) | |
| 150 | 5 149 | syl | ⊢ ( 𝜑 → ( 𝐴 ∩ 𝑊 ) ∈ V ) |
| 151 | fssres | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝐴 ∩ 𝑊 ) ⊆ 𝐴 ) → ( 𝐹 ↾ ( 𝐴 ∩ 𝑊 ) ) : ( 𝐴 ∩ 𝑊 ) ⟶ 𝐵 ) | |
| 152 | 6 8 151 | sylancl | ⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐴 ∩ 𝑊 ) ) : ( 𝐴 ∩ 𝑊 ) ⟶ 𝐵 ) |
| 153 | resres | ⊢ ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑊 ) = ( 𝐹 ↾ ( 𝐴 ∩ 𝑊 ) ) | |
| 154 | ffn | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 Fn 𝐴 ) | |
| 155 | fnresdm | ⊢ ( 𝐹 Fn 𝐴 → ( 𝐹 ↾ 𝐴 ) = 𝐹 ) | |
| 156 | 6 154 155 | 3syl | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝐴 ) = 𝐹 ) |
| 157 | 156 | reseq1d | ⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑊 ) = ( 𝐹 ↾ 𝑊 ) ) |
| 158 | 153 157 | eqtr3id | ⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐴 ∩ 𝑊 ) ) = ( 𝐹 ↾ 𝑊 ) ) |
| 159 | 158 | feq1d | ⊢ ( 𝜑 → ( ( 𝐹 ↾ ( 𝐴 ∩ 𝑊 ) ) : ( 𝐴 ∩ 𝑊 ) ⟶ 𝐵 ↔ ( 𝐹 ↾ 𝑊 ) : ( 𝐴 ∩ 𝑊 ) ⟶ 𝐵 ) ) |
| 160 | 152 159 | mpbid | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝑊 ) : ( 𝐴 ∩ 𝑊 ) ⟶ 𝐵 ) |
| 161 | 1 147 148 3 4 150 160 | eltsms | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐺 tsums ( 𝐹 ↾ 𝑊 ) ) ↔ ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑢 ∈ ( TopOpen ‘ 𝐺 ) ( 𝑥 ∈ 𝑢 → ∃ 𝑎 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ∀ 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ( 𝑎 ⊆ 𝑏 → ( 𝐺 Σg ( ( 𝐹 ↾ 𝑊 ) ↾ 𝑏 ) ) ∈ 𝑢 ) ) ) ) ) |
| 162 | eqid | ⊢ ( 𝒫 𝐴 ∩ Fin ) = ( 𝒫 𝐴 ∩ Fin ) | |
| 163 | 1 147 162 3 4 5 6 | eltsms | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ↔ ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑢 ∈ ( TopOpen ‘ 𝐺 ) ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ) ) ) ) |
| 164 | 146 161 163 | 3bitr4d | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐺 tsums ( 𝐹 ↾ 𝑊 ) ) ↔ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) ) |
| 165 | 164 | eqrdv | ⊢ ( 𝜑 → ( 𝐺 tsums ( 𝐹 ↾ 𝑊 ) ) = ( 𝐺 tsums 𝐹 ) ) |