This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Re-index an infinite group sum using a bijection. (Contributed by Mario Carneiro, 18-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tsmsf1o.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| tsmsf1o.1 | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | ||
| tsmsf1o.2 | ⊢ ( 𝜑 → 𝐺 ∈ TopSp ) | ||
| tsmsf1o.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| tsmsf1o.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | ||
| tsmsf1o.s | ⊢ ( 𝜑 → 𝐻 : 𝐶 –1-1-onto→ 𝐴 ) | ||
| Assertion | tsmsf1o | ⊢ ( 𝜑 → ( 𝐺 tsums 𝐹 ) = ( 𝐺 tsums ( 𝐹 ∘ 𝐻 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tsmsf1o.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | tsmsf1o.1 | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | |
| 3 | tsmsf1o.2 | ⊢ ( 𝜑 → 𝐺 ∈ TopSp ) | |
| 4 | tsmsf1o.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 5 | tsmsf1o.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 6 | tsmsf1o.s | ⊢ ( 𝜑 → 𝐻 : 𝐶 –1-1-onto→ 𝐴 ) | |
| 7 | f1opwfi | ⊢ ( 𝐻 : 𝐶 –1-1-onto→ 𝐴 → ( 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ↦ ( 𝐻 “ 𝑎 ) ) : ( 𝒫 𝐶 ∩ Fin ) –1-1-onto→ ( 𝒫 𝐴 ∩ Fin ) ) | |
| 8 | 6 7 | syl | ⊢ ( 𝜑 → ( 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ↦ ( 𝐻 “ 𝑎 ) ) : ( 𝒫 𝐶 ∩ Fin ) –1-1-onto→ ( 𝒫 𝐴 ∩ Fin ) ) |
| 9 | f1of | ⊢ ( ( 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ↦ ( 𝐻 “ 𝑎 ) ) : ( 𝒫 𝐶 ∩ Fin ) –1-1-onto→ ( 𝒫 𝐴 ∩ Fin ) → ( 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ↦ ( 𝐻 “ 𝑎 ) ) : ( 𝒫 𝐶 ∩ Fin ) ⟶ ( 𝒫 𝐴 ∩ Fin ) ) | |
| 10 | 8 9 | syl | ⊢ ( 𝜑 → ( 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ↦ ( 𝐻 “ 𝑎 ) ) : ( 𝒫 𝐶 ∩ Fin ) ⟶ ( 𝒫 𝐴 ∩ Fin ) ) |
| 11 | eqid | ⊢ ( 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ↦ ( 𝐻 “ 𝑎 ) ) = ( 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ↦ ( 𝐻 “ 𝑎 ) ) | |
| 12 | 11 | fmpt | ⊢ ( ∀ 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ( 𝐻 “ 𝑎 ) ∈ ( 𝒫 𝐴 ∩ Fin ) ↔ ( 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ↦ ( 𝐻 “ 𝑎 ) ) : ( 𝒫 𝐶 ∩ Fin ) ⟶ ( 𝒫 𝐴 ∩ Fin ) ) |
| 13 | 10 12 | sylibr | ⊢ ( 𝜑 → ∀ 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ( 𝐻 “ 𝑎 ) ∈ ( 𝒫 𝐴 ∩ Fin ) ) |
| 14 | sseq1 | ⊢ ( 𝑦 = ( 𝐻 “ 𝑎 ) → ( 𝑦 ⊆ 𝑧 ↔ ( 𝐻 “ 𝑎 ) ⊆ 𝑧 ) ) | |
| 15 | 14 | imbi1d | ⊢ ( 𝑦 = ( 𝐻 “ 𝑎 ) → ( ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ↔ ( ( 𝐻 “ 𝑎 ) ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ) ) |
| 16 | 15 | ralbidv | ⊢ ( 𝑦 = ( 𝐻 “ 𝑎 ) → ( ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ↔ ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( ( 𝐻 “ 𝑎 ) ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ) ) |
| 17 | 11 16 | rexrnmptw | ⊢ ( ∀ 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ( 𝐻 “ 𝑎 ) ∈ ( 𝒫 𝐴 ∩ Fin ) → ( ∃ 𝑦 ∈ ran ( 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ↦ ( 𝐻 “ 𝑎 ) ) ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ↔ ∃ 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( ( 𝐻 “ 𝑎 ) ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ) ) |
| 18 | 13 17 | syl | ⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ran ( 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ↦ ( 𝐻 “ 𝑎 ) ) ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ↔ ∃ 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( ( 𝐻 “ 𝑎 ) ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ) ) |
| 19 | f1ofo | ⊢ ( ( 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ↦ ( 𝐻 “ 𝑎 ) ) : ( 𝒫 𝐶 ∩ Fin ) –1-1-onto→ ( 𝒫 𝐴 ∩ Fin ) → ( 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ↦ ( 𝐻 “ 𝑎 ) ) : ( 𝒫 𝐶 ∩ Fin ) –onto→ ( 𝒫 𝐴 ∩ Fin ) ) | |
| 20 | forn | ⊢ ( ( 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ↦ ( 𝐻 “ 𝑎 ) ) : ( 𝒫 𝐶 ∩ Fin ) –onto→ ( 𝒫 𝐴 ∩ Fin ) → ran ( 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ↦ ( 𝐻 “ 𝑎 ) ) = ( 𝒫 𝐴 ∩ Fin ) ) | |
| 21 | 8 19 20 | 3syl | ⊢ ( 𝜑 → ran ( 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ↦ ( 𝐻 “ 𝑎 ) ) = ( 𝒫 𝐴 ∩ Fin ) ) |
| 22 | 21 | rexeqdv | ⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ran ( 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ↦ ( 𝐻 “ 𝑎 ) ) ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ↔ ∃ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ) ) |
| 23 | imaeq2 | ⊢ ( 𝑎 = 𝑏 → ( 𝐻 “ 𝑎 ) = ( 𝐻 “ 𝑏 ) ) | |
| 24 | 23 | cbvmptv | ⊢ ( 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ↦ ( 𝐻 “ 𝑎 ) ) = ( 𝑏 ∈ ( 𝒫 𝐶 ∩ Fin ) ↦ ( 𝐻 “ 𝑏 ) ) |
| 25 | 24 | fmpt | ⊢ ( ∀ 𝑏 ∈ ( 𝒫 𝐶 ∩ Fin ) ( 𝐻 “ 𝑏 ) ∈ ( 𝒫 𝐴 ∩ Fin ) ↔ ( 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ↦ ( 𝐻 “ 𝑎 ) ) : ( 𝒫 𝐶 ∩ Fin ) ⟶ ( 𝒫 𝐴 ∩ Fin ) ) |
| 26 | 10 25 | sylibr | ⊢ ( 𝜑 → ∀ 𝑏 ∈ ( 𝒫 𝐶 ∩ Fin ) ( 𝐻 “ 𝑏 ) ∈ ( 𝒫 𝐴 ∩ Fin ) ) |
| 27 | sseq2 | ⊢ ( 𝑧 = ( 𝐻 “ 𝑏 ) → ( ( 𝐻 “ 𝑎 ) ⊆ 𝑧 ↔ ( 𝐻 “ 𝑎 ) ⊆ ( 𝐻 “ 𝑏 ) ) ) | |
| 28 | reseq2 | ⊢ ( 𝑧 = ( 𝐻 “ 𝑏 ) → ( 𝐹 ↾ 𝑧 ) = ( 𝐹 ↾ ( 𝐻 “ 𝑏 ) ) ) | |
| 29 | 28 | oveq2d | ⊢ ( 𝑧 = ( 𝐻 “ 𝑏 ) → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) = ( 𝐺 Σg ( 𝐹 ↾ ( 𝐻 “ 𝑏 ) ) ) ) |
| 30 | 29 | eleq1d | ⊢ ( 𝑧 = ( 𝐻 “ 𝑏 ) → ( ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ↔ ( 𝐺 Σg ( 𝐹 ↾ ( 𝐻 “ 𝑏 ) ) ) ∈ 𝑢 ) ) |
| 31 | 27 30 | imbi12d | ⊢ ( 𝑧 = ( 𝐻 “ 𝑏 ) → ( ( ( 𝐻 “ 𝑎 ) ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ↔ ( ( 𝐻 “ 𝑎 ) ⊆ ( 𝐻 “ 𝑏 ) → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐻 “ 𝑏 ) ) ) ∈ 𝑢 ) ) ) |
| 32 | 24 31 | ralrnmptw | ⊢ ( ∀ 𝑏 ∈ ( 𝒫 𝐶 ∩ Fin ) ( 𝐻 “ 𝑏 ) ∈ ( 𝒫 𝐴 ∩ Fin ) → ( ∀ 𝑧 ∈ ran ( 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ↦ ( 𝐻 “ 𝑎 ) ) ( ( 𝐻 “ 𝑎 ) ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ↔ ∀ 𝑏 ∈ ( 𝒫 𝐶 ∩ Fin ) ( ( 𝐻 “ 𝑎 ) ⊆ ( 𝐻 “ 𝑏 ) → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐻 “ 𝑏 ) ) ) ∈ 𝑢 ) ) ) |
| 33 | 26 32 | syl | ⊢ ( 𝜑 → ( ∀ 𝑧 ∈ ran ( 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ↦ ( 𝐻 “ 𝑎 ) ) ( ( 𝐻 “ 𝑎 ) ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ↔ ∀ 𝑏 ∈ ( 𝒫 𝐶 ∩ Fin ) ( ( 𝐻 “ 𝑎 ) ⊆ ( 𝐻 “ 𝑏 ) → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐻 “ 𝑏 ) ) ) ∈ 𝑢 ) ) ) |
| 34 | 21 | raleqdv | ⊢ ( 𝜑 → ( ∀ 𝑧 ∈ ran ( 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ↦ ( 𝐻 “ 𝑎 ) ) ( ( 𝐻 “ 𝑎 ) ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ↔ ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( ( 𝐻 “ 𝑎 ) ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ) ) |
| 35 | 33 34 | bitr3d | ⊢ ( 𝜑 → ( ∀ 𝑏 ∈ ( 𝒫 𝐶 ∩ Fin ) ( ( 𝐻 “ 𝑎 ) ⊆ ( 𝐻 “ 𝑏 ) → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐻 “ 𝑏 ) ) ) ∈ 𝑢 ) ↔ ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( ( 𝐻 “ 𝑎 ) ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ) ) |
| 36 | 35 | adantr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → ( ∀ 𝑏 ∈ ( 𝒫 𝐶 ∩ Fin ) ( ( 𝐻 “ 𝑎 ) ⊆ ( 𝐻 “ 𝑏 ) → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐻 “ 𝑏 ) ) ) ∈ 𝑢 ) ↔ ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( ( 𝐻 “ 𝑎 ) ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ) ) |
| 37 | f1of1 | ⊢ ( 𝐻 : 𝐶 –1-1-onto→ 𝐴 → 𝐻 : 𝐶 –1-1→ 𝐴 ) | |
| 38 | 6 37 | syl | ⊢ ( 𝜑 → 𝐻 : 𝐶 –1-1→ 𝐴 ) |
| 39 | 38 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑏 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → 𝐻 : 𝐶 –1-1→ 𝐴 ) |
| 40 | elfpw | ⊢ ( 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ↔ ( 𝑎 ⊆ 𝐶 ∧ 𝑎 ∈ Fin ) ) | |
| 41 | 40 | simplbi | ⊢ ( 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) → 𝑎 ⊆ 𝐶 ) |
| 42 | 41 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑏 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → 𝑎 ⊆ 𝐶 ) |
| 43 | elfpw | ⊢ ( 𝑏 ∈ ( 𝒫 𝐶 ∩ Fin ) ↔ ( 𝑏 ⊆ 𝐶 ∧ 𝑏 ∈ Fin ) ) | |
| 44 | 43 | simplbi | ⊢ ( 𝑏 ∈ ( 𝒫 𝐶 ∩ Fin ) → 𝑏 ⊆ 𝐶 ) |
| 45 | 44 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑏 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → 𝑏 ⊆ 𝐶 ) |
| 46 | f1imass | ⊢ ( ( 𝐻 : 𝐶 –1-1→ 𝐴 ∧ ( 𝑎 ⊆ 𝐶 ∧ 𝑏 ⊆ 𝐶 ) ) → ( ( 𝐻 “ 𝑎 ) ⊆ ( 𝐻 “ 𝑏 ) ↔ 𝑎 ⊆ 𝑏 ) ) | |
| 47 | 39 42 45 46 | syl12anc | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑏 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → ( ( 𝐻 “ 𝑎 ) ⊆ ( 𝐻 “ 𝑏 ) ↔ 𝑎 ⊆ 𝑏 ) ) |
| 48 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 49 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑏 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → 𝐺 ∈ CMnd ) |
| 50 | elinel2 | ⊢ ( 𝑏 ∈ ( 𝒫 𝐶 ∩ Fin ) → 𝑏 ∈ Fin ) | |
| 51 | 50 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑏 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → 𝑏 ∈ Fin ) |
| 52 | f1ores | ⊢ ( ( 𝐻 : 𝐶 –1-1→ 𝐴 ∧ 𝑏 ⊆ 𝐶 ) → ( 𝐻 ↾ 𝑏 ) : 𝑏 –1-1-onto→ ( 𝐻 “ 𝑏 ) ) | |
| 53 | 39 45 52 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑏 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → ( 𝐻 ↾ 𝑏 ) : 𝑏 –1-1-onto→ ( 𝐻 “ 𝑏 ) ) |
| 54 | f1ofo | ⊢ ( ( 𝐻 ↾ 𝑏 ) : 𝑏 –1-1-onto→ ( 𝐻 “ 𝑏 ) → ( 𝐻 ↾ 𝑏 ) : 𝑏 –onto→ ( 𝐻 “ 𝑏 ) ) | |
| 55 | 53 54 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑏 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → ( 𝐻 ↾ 𝑏 ) : 𝑏 –onto→ ( 𝐻 “ 𝑏 ) ) |
| 56 | fofi | ⊢ ( ( 𝑏 ∈ Fin ∧ ( 𝐻 ↾ 𝑏 ) : 𝑏 –onto→ ( 𝐻 “ 𝑏 ) ) → ( 𝐻 “ 𝑏 ) ∈ Fin ) | |
| 57 | 51 55 56 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑏 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → ( 𝐻 “ 𝑏 ) ∈ Fin ) |
| 58 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑏 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 59 | imassrn | ⊢ ( 𝐻 “ 𝑏 ) ⊆ ran 𝐻 | |
| 60 | 6 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑏 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → 𝐻 : 𝐶 –1-1-onto→ 𝐴 ) |
| 61 | f1ofo | ⊢ ( 𝐻 : 𝐶 –1-1-onto→ 𝐴 → 𝐻 : 𝐶 –onto→ 𝐴 ) | |
| 62 | forn | ⊢ ( 𝐻 : 𝐶 –onto→ 𝐴 → ran 𝐻 = 𝐴 ) | |
| 63 | 60 61 62 | 3syl | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑏 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → ran 𝐻 = 𝐴 ) |
| 64 | 59 63 | sseqtrid | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑏 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → ( 𝐻 “ 𝑏 ) ⊆ 𝐴 ) |
| 65 | 58 64 | fssresd | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑏 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → ( 𝐹 ↾ ( 𝐻 “ 𝑏 ) ) : ( 𝐻 “ 𝑏 ) ⟶ 𝐵 ) |
| 66 | fvexd | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑏 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → ( 0g ‘ 𝐺 ) ∈ V ) | |
| 67 | 65 57 66 | fdmfifsupp | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑏 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → ( 𝐹 ↾ ( 𝐻 “ 𝑏 ) ) finSupp ( 0g ‘ 𝐺 ) ) |
| 68 | 1 48 49 57 65 67 53 | gsumf1o | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑏 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐻 “ 𝑏 ) ) ) = ( 𝐺 Σg ( ( 𝐹 ↾ ( 𝐻 “ 𝑏 ) ) ∘ ( 𝐻 ↾ 𝑏 ) ) ) ) |
| 69 | df-ima | ⊢ ( 𝐻 “ 𝑏 ) = ran ( 𝐻 ↾ 𝑏 ) | |
| 70 | 69 | eqimss2i | ⊢ ran ( 𝐻 ↾ 𝑏 ) ⊆ ( 𝐻 “ 𝑏 ) |
| 71 | cores | ⊢ ( ran ( 𝐻 ↾ 𝑏 ) ⊆ ( 𝐻 “ 𝑏 ) → ( ( 𝐹 ↾ ( 𝐻 “ 𝑏 ) ) ∘ ( 𝐻 ↾ 𝑏 ) ) = ( 𝐹 ∘ ( 𝐻 ↾ 𝑏 ) ) ) | |
| 72 | 70 71 | ax-mp | ⊢ ( ( 𝐹 ↾ ( 𝐻 “ 𝑏 ) ) ∘ ( 𝐻 ↾ 𝑏 ) ) = ( 𝐹 ∘ ( 𝐻 ↾ 𝑏 ) ) |
| 73 | resco | ⊢ ( ( 𝐹 ∘ 𝐻 ) ↾ 𝑏 ) = ( 𝐹 ∘ ( 𝐻 ↾ 𝑏 ) ) | |
| 74 | 72 73 | eqtr4i | ⊢ ( ( 𝐹 ↾ ( 𝐻 “ 𝑏 ) ) ∘ ( 𝐻 ↾ 𝑏 ) ) = ( ( 𝐹 ∘ 𝐻 ) ↾ 𝑏 ) |
| 75 | 74 | oveq2i | ⊢ ( 𝐺 Σg ( ( 𝐹 ↾ ( 𝐻 “ 𝑏 ) ) ∘ ( 𝐻 ↾ 𝑏 ) ) ) = ( 𝐺 Σg ( ( 𝐹 ∘ 𝐻 ) ↾ 𝑏 ) ) |
| 76 | 68 75 | eqtrdi | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑏 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐻 “ 𝑏 ) ) ) = ( 𝐺 Σg ( ( 𝐹 ∘ 𝐻 ) ↾ 𝑏 ) ) ) |
| 77 | 76 | eleq1d | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑏 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → ( ( 𝐺 Σg ( 𝐹 ↾ ( 𝐻 “ 𝑏 ) ) ) ∈ 𝑢 ↔ ( 𝐺 Σg ( ( 𝐹 ∘ 𝐻 ) ↾ 𝑏 ) ) ∈ 𝑢 ) ) |
| 78 | 47 77 | imbi12d | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑏 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → ( ( ( 𝐻 “ 𝑎 ) ⊆ ( 𝐻 “ 𝑏 ) → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐻 “ 𝑏 ) ) ) ∈ 𝑢 ) ↔ ( 𝑎 ⊆ 𝑏 → ( 𝐺 Σg ( ( 𝐹 ∘ 𝐻 ) ↾ 𝑏 ) ) ∈ 𝑢 ) ) ) |
| 79 | 78 | ralbidva | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → ( ∀ 𝑏 ∈ ( 𝒫 𝐶 ∩ Fin ) ( ( 𝐻 “ 𝑎 ) ⊆ ( 𝐻 “ 𝑏 ) → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐻 “ 𝑏 ) ) ) ∈ 𝑢 ) ↔ ∀ 𝑏 ∈ ( 𝒫 𝐶 ∩ Fin ) ( 𝑎 ⊆ 𝑏 → ( 𝐺 Σg ( ( 𝐹 ∘ 𝐻 ) ↾ 𝑏 ) ) ∈ 𝑢 ) ) ) |
| 80 | 36 79 | bitr3d | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → ( ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( ( 𝐻 “ 𝑎 ) ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ↔ ∀ 𝑏 ∈ ( 𝒫 𝐶 ∩ Fin ) ( 𝑎 ⊆ 𝑏 → ( 𝐺 Σg ( ( 𝐹 ∘ 𝐻 ) ↾ 𝑏 ) ) ∈ 𝑢 ) ) ) |
| 81 | 80 | rexbidva | ⊢ ( 𝜑 → ( ∃ 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( ( 𝐻 “ 𝑎 ) ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ↔ ∃ 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ∀ 𝑏 ∈ ( 𝒫 𝐶 ∩ Fin ) ( 𝑎 ⊆ 𝑏 → ( 𝐺 Σg ( ( 𝐹 ∘ 𝐻 ) ↾ 𝑏 ) ) ∈ 𝑢 ) ) ) |
| 82 | 18 22 81 | 3bitr3d | ⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ↔ ∃ 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ∀ 𝑏 ∈ ( 𝒫 𝐶 ∩ Fin ) ( 𝑎 ⊆ 𝑏 → ( 𝐺 Σg ( ( 𝐹 ∘ 𝐻 ) ↾ 𝑏 ) ) ∈ 𝑢 ) ) ) |
| 83 | 82 | imbi2d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ) ↔ ( 𝑥 ∈ 𝑢 → ∃ 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ∀ 𝑏 ∈ ( 𝒫 𝐶 ∩ Fin ) ( 𝑎 ⊆ 𝑏 → ( 𝐺 Σg ( ( 𝐹 ∘ 𝐻 ) ↾ 𝑏 ) ) ∈ 𝑢 ) ) ) ) |
| 84 | 83 | ralbidv | ⊢ ( 𝜑 → ( ∀ 𝑢 ∈ ( TopOpen ‘ 𝐺 ) ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ) ↔ ∀ 𝑢 ∈ ( TopOpen ‘ 𝐺 ) ( 𝑥 ∈ 𝑢 → ∃ 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ∀ 𝑏 ∈ ( 𝒫 𝐶 ∩ Fin ) ( 𝑎 ⊆ 𝑏 → ( 𝐺 Σg ( ( 𝐹 ∘ 𝐻 ) ↾ 𝑏 ) ) ∈ 𝑢 ) ) ) ) |
| 85 | 84 | anbi2d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑢 ∈ ( TopOpen ‘ 𝐺 ) ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ) ) ↔ ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑢 ∈ ( TopOpen ‘ 𝐺 ) ( 𝑥 ∈ 𝑢 → ∃ 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ∀ 𝑏 ∈ ( 𝒫 𝐶 ∩ Fin ) ( 𝑎 ⊆ 𝑏 → ( 𝐺 Σg ( ( 𝐹 ∘ 𝐻 ) ↾ 𝑏 ) ) ∈ 𝑢 ) ) ) ) ) |
| 86 | eqid | ⊢ ( TopOpen ‘ 𝐺 ) = ( TopOpen ‘ 𝐺 ) | |
| 87 | eqid | ⊢ ( 𝒫 𝐴 ∩ Fin ) = ( 𝒫 𝐴 ∩ Fin ) | |
| 88 | 1 86 87 2 3 4 5 | eltsms | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ↔ ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑢 ∈ ( TopOpen ‘ 𝐺 ) ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ) ) ) ) |
| 89 | eqid | ⊢ ( 𝒫 𝐶 ∩ Fin ) = ( 𝒫 𝐶 ∩ Fin ) | |
| 90 | f1dmex | ⊢ ( ( 𝐻 : 𝐶 –1-1→ 𝐴 ∧ 𝐴 ∈ 𝑉 ) → 𝐶 ∈ V ) | |
| 91 | 38 4 90 | syl2anc | ⊢ ( 𝜑 → 𝐶 ∈ V ) |
| 92 | f1of | ⊢ ( 𝐻 : 𝐶 –1-1-onto→ 𝐴 → 𝐻 : 𝐶 ⟶ 𝐴 ) | |
| 93 | 6 92 | syl | ⊢ ( 𝜑 → 𝐻 : 𝐶 ⟶ 𝐴 ) |
| 94 | fco | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐻 : 𝐶 ⟶ 𝐴 ) → ( 𝐹 ∘ 𝐻 ) : 𝐶 ⟶ 𝐵 ) | |
| 95 | 5 93 94 | syl2anc | ⊢ ( 𝜑 → ( 𝐹 ∘ 𝐻 ) : 𝐶 ⟶ 𝐵 ) |
| 96 | 1 86 89 2 3 91 95 | eltsms | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐺 tsums ( 𝐹 ∘ 𝐻 ) ) ↔ ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑢 ∈ ( TopOpen ‘ 𝐺 ) ( 𝑥 ∈ 𝑢 → ∃ 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ∀ 𝑏 ∈ ( 𝒫 𝐶 ∩ Fin ) ( 𝑎 ⊆ 𝑏 → ( 𝐺 Σg ( ( 𝐹 ∘ 𝐻 ) ↾ 𝑏 ) ) ∈ 𝑢 ) ) ) ) ) |
| 97 | 85 88 96 | 3bitr4d | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ↔ 𝑥 ∈ ( 𝐺 tsums ( 𝐹 ∘ 𝐻 ) ) ) ) |
| 98 | 97 | eqrdv | ⊢ ( 𝜑 → ( 𝐺 tsums 𝐹 ) = ( 𝐺 tsums ( 𝐹 ∘ 𝐻 ) ) ) |