This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Apply a continuous group homomorphism to an infinite group sum. (Contributed by Mario Carneiro, 18-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tsmsmhm.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| tsmsmhm.j | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | ||
| tsmsmhm.k | ⊢ 𝐾 = ( TopOpen ‘ 𝐻 ) | ||
| tsmsmhm.1 | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | ||
| tsmsmhm.2 | ⊢ ( 𝜑 → 𝐺 ∈ TopSp ) | ||
| tsmsmhm.3 | ⊢ ( 𝜑 → 𝐻 ∈ CMnd ) | ||
| tsmsmhm.4 | ⊢ ( 𝜑 → 𝐻 ∈ TopSp ) | ||
| tsmsmhm.5 | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝐺 MndHom 𝐻 ) ) | ||
| tsmsmhm.6 | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝐽 Cn 𝐾 ) ) | ||
| tsmsmhm.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| tsmsmhm.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | ||
| tsmsmhm.x | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐺 tsums 𝐹 ) ) | ||
| Assertion | tsmsmhm | ⊢ ( 𝜑 → ( 𝐶 ‘ 𝑋 ) ∈ ( 𝐻 tsums ( 𝐶 ∘ 𝐹 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tsmsmhm.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | tsmsmhm.j | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | |
| 3 | tsmsmhm.k | ⊢ 𝐾 = ( TopOpen ‘ 𝐻 ) | |
| 4 | tsmsmhm.1 | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | |
| 5 | tsmsmhm.2 | ⊢ ( 𝜑 → 𝐺 ∈ TopSp ) | |
| 6 | tsmsmhm.3 | ⊢ ( 𝜑 → 𝐻 ∈ CMnd ) | |
| 7 | tsmsmhm.4 | ⊢ ( 𝜑 → 𝐻 ∈ TopSp ) | |
| 8 | tsmsmhm.5 | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝐺 MndHom 𝐻 ) ) | |
| 9 | tsmsmhm.6 | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝐽 Cn 𝐾 ) ) | |
| 10 | tsmsmhm.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 11 | tsmsmhm.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 12 | tsmsmhm.x | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐺 tsums 𝐹 ) ) | |
| 13 | 1 2 | istps | ⊢ ( 𝐺 ∈ TopSp ↔ 𝐽 ∈ ( TopOn ‘ 𝐵 ) ) |
| 14 | 5 13 | sylib | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝐵 ) ) |
| 15 | eqid | ⊢ ( 𝒫 𝐴 ∩ Fin ) = ( 𝒫 𝐴 ∩ Fin ) | |
| 16 | eqid | ⊢ ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ { 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∣ 𝑦 ⊆ 𝑧 } ) = ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ { 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∣ 𝑦 ⊆ 𝑧 } ) | |
| 17 | eqid | ⊢ ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ { 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∣ 𝑦 ⊆ 𝑧 } ) = ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ { 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∣ 𝑦 ⊆ 𝑧 } ) | |
| 18 | 15 16 17 10 | tsmsfbas | ⊢ ( 𝜑 → ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ { 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∣ 𝑦 ⊆ 𝑧 } ) ∈ ( fBas ‘ ( 𝒫 𝐴 ∩ Fin ) ) ) |
| 19 | fgcl | ⊢ ( ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ { 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∣ 𝑦 ⊆ 𝑧 } ) ∈ ( fBas ‘ ( 𝒫 𝐴 ∩ Fin ) ) → ( ( 𝒫 𝐴 ∩ Fin ) filGen ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ { 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∣ 𝑦 ⊆ 𝑧 } ) ) ∈ ( Fil ‘ ( 𝒫 𝐴 ∩ Fin ) ) ) | |
| 20 | 18 19 | syl | ⊢ ( 𝜑 → ( ( 𝒫 𝐴 ∩ Fin ) filGen ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ { 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∣ 𝑦 ⊆ 𝑧 } ) ) ∈ ( Fil ‘ ( 𝒫 𝐴 ∩ Fin ) ) ) |
| 21 | 1 15 4 10 11 | tsmslem1 | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝐵 ) |
| 22 | 21 | fmpttd | ⊢ ( 𝜑 → ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ) : ( 𝒫 𝐴 ∩ Fin ) ⟶ 𝐵 ) |
| 23 | 1 2 15 17 5 10 11 | tsmsval | ⊢ ( 𝜑 → ( 𝐺 tsums 𝐹 ) = ( ( 𝐽 fLimf ( ( 𝒫 𝐴 ∩ Fin ) filGen ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ { 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∣ 𝑦 ⊆ 𝑧 } ) ) ) ‘ ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ) ) ) |
| 24 | 12 23 | eleqtrd | ⊢ ( 𝜑 → 𝑋 ∈ ( ( 𝐽 fLimf ( ( 𝒫 𝐴 ∩ Fin ) filGen ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ { 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∣ 𝑦 ⊆ 𝑧 } ) ) ) ‘ ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ) ) ) |
| 25 | 1 4 5 10 11 | tsmscl | ⊢ ( 𝜑 → ( 𝐺 tsums 𝐹 ) ⊆ 𝐵 ) |
| 26 | 25 12 | sseldd | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 27 | toponuni | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝐵 ) → 𝐵 = ∪ 𝐽 ) | |
| 28 | 14 27 | syl | ⊢ ( 𝜑 → 𝐵 = ∪ 𝐽 ) |
| 29 | 26 28 | eleqtrd | ⊢ ( 𝜑 → 𝑋 ∈ ∪ 𝐽 ) |
| 30 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 31 | 30 | cncnpi | ⊢ ( ( 𝐶 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑋 ∈ ∪ 𝐽 ) → 𝐶 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑋 ) ) |
| 32 | 9 29 31 | syl2anc | ⊢ ( 𝜑 → 𝐶 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑋 ) ) |
| 33 | flfcnp | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝐵 ) ∧ ( ( 𝒫 𝐴 ∩ Fin ) filGen ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ { 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∣ 𝑦 ⊆ 𝑧 } ) ) ∈ ( Fil ‘ ( 𝒫 𝐴 ∩ Fin ) ) ∧ ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ) : ( 𝒫 𝐴 ∩ Fin ) ⟶ 𝐵 ) ∧ ( 𝑋 ∈ ( ( 𝐽 fLimf ( ( 𝒫 𝐴 ∩ Fin ) filGen ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ { 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∣ 𝑦 ⊆ 𝑧 } ) ) ) ‘ ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ) ) ∧ 𝐶 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑋 ) ) ) → ( 𝐶 ‘ 𝑋 ) ∈ ( ( 𝐾 fLimf ( ( 𝒫 𝐴 ∩ Fin ) filGen ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ { 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∣ 𝑦 ⊆ 𝑧 } ) ) ) ‘ ( 𝐶 ∘ ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ) ) ) ) | |
| 34 | 14 20 22 24 32 33 | syl32anc | ⊢ ( 𝜑 → ( 𝐶 ‘ 𝑋 ) ∈ ( ( 𝐾 fLimf ( ( 𝒫 𝐴 ∩ Fin ) filGen ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ { 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∣ 𝑦 ⊆ 𝑧 } ) ) ) ‘ ( 𝐶 ∘ ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ) ) ) ) |
| 35 | eqid | ⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) | |
| 36 | 35 3 | istps | ⊢ ( 𝐻 ∈ TopSp ↔ 𝐾 ∈ ( TopOn ‘ ( Base ‘ 𝐻 ) ) ) |
| 37 | 7 36 | sylib | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ ( Base ‘ 𝐻 ) ) ) |
| 38 | cnf2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝐵 ) ∧ 𝐾 ∈ ( TopOn ‘ ( Base ‘ 𝐻 ) ) ∧ 𝐶 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐶 : 𝐵 ⟶ ( Base ‘ 𝐻 ) ) | |
| 39 | 14 37 9 38 | syl3anc | ⊢ ( 𝜑 → 𝐶 : 𝐵 ⟶ ( Base ‘ 𝐻 ) ) |
| 40 | fco | ⊢ ( ( 𝐶 : 𝐵 ⟶ ( Base ‘ 𝐻 ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝐶 ∘ 𝐹 ) : 𝐴 ⟶ ( Base ‘ 𝐻 ) ) | |
| 41 | 39 11 40 | syl2anc | ⊢ ( 𝜑 → ( 𝐶 ∘ 𝐹 ) : 𝐴 ⟶ ( Base ‘ 𝐻 ) ) |
| 42 | 35 3 15 17 6 10 41 | tsmsval | ⊢ ( 𝜑 → ( 𝐻 tsums ( 𝐶 ∘ 𝐹 ) ) = ( ( 𝐾 fLimf ( ( 𝒫 𝐴 ∩ Fin ) filGen ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ { 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∣ 𝑦 ⊆ 𝑧 } ) ) ) ‘ ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( 𝐻 Σg ( ( 𝐶 ∘ 𝐹 ) ↾ 𝑧 ) ) ) ) ) |
| 43 | 39 21 | cofmpt | ⊢ ( 𝜑 → ( 𝐶 ∘ ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ) ) = ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( 𝐶 ‘ ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ) ) ) |
| 44 | resco | ⊢ ( ( 𝐶 ∘ 𝐹 ) ↾ 𝑧 ) = ( 𝐶 ∘ ( 𝐹 ↾ 𝑧 ) ) | |
| 45 | 44 | oveq2i | ⊢ ( 𝐻 Σg ( ( 𝐶 ∘ 𝐹 ) ↾ 𝑧 ) ) = ( 𝐻 Σg ( 𝐶 ∘ ( 𝐹 ↾ 𝑧 ) ) ) |
| 46 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 47 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝐺 ∈ CMnd ) |
| 48 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝐻 ∈ CMnd ) |
| 49 | cmnmnd | ⊢ ( 𝐻 ∈ CMnd → 𝐻 ∈ Mnd ) | |
| 50 | 48 49 | syl | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝐻 ∈ Mnd ) |
| 51 | elinel2 | ⊢ ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝑧 ∈ Fin ) | |
| 52 | 51 | adantl | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝑧 ∈ Fin ) |
| 53 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝐶 ∈ ( 𝐺 MndHom 𝐻 ) ) |
| 54 | elfpw | ⊢ ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ↔ ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ∈ Fin ) ) | |
| 55 | 54 | simplbi | ⊢ ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝑧 ⊆ 𝐴 ) |
| 56 | fssres | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑧 ⊆ 𝐴 ) → ( 𝐹 ↾ 𝑧 ) : 𝑧 ⟶ 𝐵 ) | |
| 57 | 11 55 56 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐹 ↾ 𝑧 ) : 𝑧 ⟶ 𝐵 ) |
| 58 | fvexd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 0g ‘ 𝐺 ) ∈ V ) | |
| 59 | 57 52 58 | fdmfifsupp | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐹 ↾ 𝑧 ) finSupp ( 0g ‘ 𝐺 ) ) |
| 60 | 1 46 47 50 52 53 57 59 | gsummhm | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐻 Σg ( 𝐶 ∘ ( 𝐹 ↾ 𝑧 ) ) ) = ( 𝐶 ‘ ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ) ) |
| 61 | 45 60 | eqtrid | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐻 Σg ( ( 𝐶 ∘ 𝐹 ) ↾ 𝑧 ) ) = ( 𝐶 ‘ ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ) ) |
| 62 | 61 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( 𝐻 Σg ( ( 𝐶 ∘ 𝐹 ) ↾ 𝑧 ) ) ) = ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( 𝐶 ‘ ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ) ) ) |
| 63 | 43 62 | eqtr4d | ⊢ ( 𝜑 → ( 𝐶 ∘ ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ) ) = ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( 𝐻 Σg ( ( 𝐶 ∘ 𝐹 ) ↾ 𝑧 ) ) ) ) |
| 64 | 63 | fveq2d | ⊢ ( 𝜑 → ( ( 𝐾 fLimf ( ( 𝒫 𝐴 ∩ Fin ) filGen ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ { 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∣ 𝑦 ⊆ 𝑧 } ) ) ) ‘ ( 𝐶 ∘ ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ) ) ) = ( ( 𝐾 fLimf ( ( 𝒫 𝐴 ∩ Fin ) filGen ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ { 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∣ 𝑦 ⊆ 𝑧 } ) ) ) ‘ ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( 𝐻 Σg ( ( 𝐶 ∘ 𝐹 ) ↾ 𝑧 ) ) ) ) ) |
| 65 | 42 64 | eqtr4d | ⊢ ( 𝜑 → ( 𝐻 tsums ( 𝐶 ∘ 𝐹 ) ) = ( ( 𝐾 fLimf ( ( 𝒫 𝐴 ∩ Fin ) filGen ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ { 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∣ 𝑦 ⊆ 𝑧 } ) ) ) ‘ ( 𝐶 ∘ ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ) ) ) ) |
| 66 | 34 65 | eleqtrrd | ⊢ ( 𝜑 → ( 𝐶 ‘ 𝑋 ) ∈ ( 𝐻 tsums ( 𝐶 ∘ 𝐹 ) ) ) |