This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Apply a continuous group homomorphism to an infinite group sum. (Contributed by Mario Carneiro, 18-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tsmsmhm.b | |- B = ( Base ` G ) |
|
| tsmsmhm.j | |- J = ( TopOpen ` G ) |
||
| tsmsmhm.k | |- K = ( TopOpen ` H ) |
||
| tsmsmhm.1 | |- ( ph -> G e. CMnd ) |
||
| tsmsmhm.2 | |- ( ph -> G e. TopSp ) |
||
| tsmsmhm.3 | |- ( ph -> H e. CMnd ) |
||
| tsmsmhm.4 | |- ( ph -> H e. TopSp ) |
||
| tsmsmhm.5 | |- ( ph -> C e. ( G MndHom H ) ) |
||
| tsmsmhm.6 | |- ( ph -> C e. ( J Cn K ) ) |
||
| tsmsmhm.a | |- ( ph -> A e. V ) |
||
| tsmsmhm.f | |- ( ph -> F : A --> B ) |
||
| tsmsmhm.x | |- ( ph -> X e. ( G tsums F ) ) |
||
| Assertion | tsmsmhm | |- ( ph -> ( C ` X ) e. ( H tsums ( C o. F ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tsmsmhm.b | |- B = ( Base ` G ) |
|
| 2 | tsmsmhm.j | |- J = ( TopOpen ` G ) |
|
| 3 | tsmsmhm.k | |- K = ( TopOpen ` H ) |
|
| 4 | tsmsmhm.1 | |- ( ph -> G e. CMnd ) |
|
| 5 | tsmsmhm.2 | |- ( ph -> G e. TopSp ) |
|
| 6 | tsmsmhm.3 | |- ( ph -> H e. CMnd ) |
|
| 7 | tsmsmhm.4 | |- ( ph -> H e. TopSp ) |
|
| 8 | tsmsmhm.5 | |- ( ph -> C e. ( G MndHom H ) ) |
|
| 9 | tsmsmhm.6 | |- ( ph -> C e. ( J Cn K ) ) |
|
| 10 | tsmsmhm.a | |- ( ph -> A e. V ) |
|
| 11 | tsmsmhm.f | |- ( ph -> F : A --> B ) |
|
| 12 | tsmsmhm.x | |- ( ph -> X e. ( G tsums F ) ) |
|
| 13 | 1 2 | istps | |- ( G e. TopSp <-> J e. ( TopOn ` B ) ) |
| 14 | 5 13 | sylib | |- ( ph -> J e. ( TopOn ` B ) ) |
| 15 | eqid | |- ( ~P A i^i Fin ) = ( ~P A i^i Fin ) |
|
| 16 | eqid | |- ( y e. ( ~P A i^i Fin ) |-> { z e. ( ~P A i^i Fin ) | y C_ z } ) = ( y e. ( ~P A i^i Fin ) |-> { z e. ( ~P A i^i Fin ) | y C_ z } ) |
|
| 17 | eqid | |- ran ( y e. ( ~P A i^i Fin ) |-> { z e. ( ~P A i^i Fin ) | y C_ z } ) = ran ( y e. ( ~P A i^i Fin ) |-> { z e. ( ~P A i^i Fin ) | y C_ z } ) |
|
| 18 | 15 16 17 10 | tsmsfbas | |- ( ph -> ran ( y e. ( ~P A i^i Fin ) |-> { z e. ( ~P A i^i Fin ) | y C_ z } ) e. ( fBas ` ( ~P A i^i Fin ) ) ) |
| 19 | fgcl | |- ( ran ( y e. ( ~P A i^i Fin ) |-> { z e. ( ~P A i^i Fin ) | y C_ z } ) e. ( fBas ` ( ~P A i^i Fin ) ) -> ( ( ~P A i^i Fin ) filGen ran ( y e. ( ~P A i^i Fin ) |-> { z e. ( ~P A i^i Fin ) | y C_ z } ) ) e. ( Fil ` ( ~P A i^i Fin ) ) ) |
|
| 20 | 18 19 | syl | |- ( ph -> ( ( ~P A i^i Fin ) filGen ran ( y e. ( ~P A i^i Fin ) |-> { z e. ( ~P A i^i Fin ) | y C_ z } ) ) e. ( Fil ` ( ~P A i^i Fin ) ) ) |
| 21 | 1 15 4 10 11 | tsmslem1 | |- ( ( ph /\ z e. ( ~P A i^i Fin ) ) -> ( G gsum ( F |` z ) ) e. B ) |
| 22 | 21 | fmpttd | |- ( ph -> ( z e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` z ) ) ) : ( ~P A i^i Fin ) --> B ) |
| 23 | 1 2 15 17 5 10 11 | tsmsval | |- ( ph -> ( G tsums F ) = ( ( J fLimf ( ( ~P A i^i Fin ) filGen ran ( y e. ( ~P A i^i Fin ) |-> { z e. ( ~P A i^i Fin ) | y C_ z } ) ) ) ` ( z e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` z ) ) ) ) ) |
| 24 | 12 23 | eleqtrd | |- ( ph -> X e. ( ( J fLimf ( ( ~P A i^i Fin ) filGen ran ( y e. ( ~P A i^i Fin ) |-> { z e. ( ~P A i^i Fin ) | y C_ z } ) ) ) ` ( z e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` z ) ) ) ) ) |
| 25 | 1 4 5 10 11 | tsmscl | |- ( ph -> ( G tsums F ) C_ B ) |
| 26 | 25 12 | sseldd | |- ( ph -> X e. B ) |
| 27 | toponuni | |- ( J e. ( TopOn ` B ) -> B = U. J ) |
|
| 28 | 14 27 | syl | |- ( ph -> B = U. J ) |
| 29 | 26 28 | eleqtrd | |- ( ph -> X e. U. J ) |
| 30 | eqid | |- U. J = U. J |
|
| 31 | 30 | cncnpi | |- ( ( C e. ( J Cn K ) /\ X e. U. J ) -> C e. ( ( J CnP K ) ` X ) ) |
| 32 | 9 29 31 | syl2anc | |- ( ph -> C e. ( ( J CnP K ) ` X ) ) |
| 33 | flfcnp | |- ( ( ( J e. ( TopOn ` B ) /\ ( ( ~P A i^i Fin ) filGen ran ( y e. ( ~P A i^i Fin ) |-> { z e. ( ~P A i^i Fin ) | y C_ z } ) ) e. ( Fil ` ( ~P A i^i Fin ) ) /\ ( z e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` z ) ) ) : ( ~P A i^i Fin ) --> B ) /\ ( X e. ( ( J fLimf ( ( ~P A i^i Fin ) filGen ran ( y e. ( ~P A i^i Fin ) |-> { z e. ( ~P A i^i Fin ) | y C_ z } ) ) ) ` ( z e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` z ) ) ) ) /\ C e. ( ( J CnP K ) ` X ) ) ) -> ( C ` X ) e. ( ( K fLimf ( ( ~P A i^i Fin ) filGen ran ( y e. ( ~P A i^i Fin ) |-> { z e. ( ~P A i^i Fin ) | y C_ z } ) ) ) ` ( C o. ( z e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` z ) ) ) ) ) ) |
|
| 34 | 14 20 22 24 32 33 | syl32anc | |- ( ph -> ( C ` X ) e. ( ( K fLimf ( ( ~P A i^i Fin ) filGen ran ( y e. ( ~P A i^i Fin ) |-> { z e. ( ~P A i^i Fin ) | y C_ z } ) ) ) ` ( C o. ( z e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` z ) ) ) ) ) ) |
| 35 | eqid | |- ( Base ` H ) = ( Base ` H ) |
|
| 36 | 35 3 | istps | |- ( H e. TopSp <-> K e. ( TopOn ` ( Base ` H ) ) ) |
| 37 | 7 36 | sylib | |- ( ph -> K e. ( TopOn ` ( Base ` H ) ) ) |
| 38 | cnf2 | |- ( ( J e. ( TopOn ` B ) /\ K e. ( TopOn ` ( Base ` H ) ) /\ C e. ( J Cn K ) ) -> C : B --> ( Base ` H ) ) |
|
| 39 | 14 37 9 38 | syl3anc | |- ( ph -> C : B --> ( Base ` H ) ) |
| 40 | fco | |- ( ( C : B --> ( Base ` H ) /\ F : A --> B ) -> ( C o. F ) : A --> ( Base ` H ) ) |
|
| 41 | 39 11 40 | syl2anc | |- ( ph -> ( C o. F ) : A --> ( Base ` H ) ) |
| 42 | 35 3 15 17 6 10 41 | tsmsval | |- ( ph -> ( H tsums ( C o. F ) ) = ( ( K fLimf ( ( ~P A i^i Fin ) filGen ran ( y e. ( ~P A i^i Fin ) |-> { z e. ( ~P A i^i Fin ) | y C_ z } ) ) ) ` ( z e. ( ~P A i^i Fin ) |-> ( H gsum ( ( C o. F ) |` z ) ) ) ) ) |
| 43 | 39 21 | cofmpt | |- ( ph -> ( C o. ( z e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` z ) ) ) ) = ( z e. ( ~P A i^i Fin ) |-> ( C ` ( G gsum ( F |` z ) ) ) ) ) |
| 44 | resco | |- ( ( C o. F ) |` z ) = ( C o. ( F |` z ) ) |
|
| 45 | 44 | oveq2i | |- ( H gsum ( ( C o. F ) |` z ) ) = ( H gsum ( C o. ( F |` z ) ) ) |
| 46 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 47 | 4 | adantr | |- ( ( ph /\ z e. ( ~P A i^i Fin ) ) -> G e. CMnd ) |
| 48 | 6 | adantr | |- ( ( ph /\ z e. ( ~P A i^i Fin ) ) -> H e. CMnd ) |
| 49 | cmnmnd | |- ( H e. CMnd -> H e. Mnd ) |
|
| 50 | 48 49 | syl | |- ( ( ph /\ z e. ( ~P A i^i Fin ) ) -> H e. Mnd ) |
| 51 | elinel2 | |- ( z e. ( ~P A i^i Fin ) -> z e. Fin ) |
|
| 52 | 51 | adantl | |- ( ( ph /\ z e. ( ~P A i^i Fin ) ) -> z e. Fin ) |
| 53 | 8 | adantr | |- ( ( ph /\ z e. ( ~P A i^i Fin ) ) -> C e. ( G MndHom H ) ) |
| 54 | elfpw | |- ( z e. ( ~P A i^i Fin ) <-> ( z C_ A /\ z e. Fin ) ) |
|
| 55 | 54 | simplbi | |- ( z e. ( ~P A i^i Fin ) -> z C_ A ) |
| 56 | fssres | |- ( ( F : A --> B /\ z C_ A ) -> ( F |` z ) : z --> B ) |
|
| 57 | 11 55 56 | syl2an | |- ( ( ph /\ z e. ( ~P A i^i Fin ) ) -> ( F |` z ) : z --> B ) |
| 58 | fvexd | |- ( ( ph /\ z e. ( ~P A i^i Fin ) ) -> ( 0g ` G ) e. _V ) |
|
| 59 | 57 52 58 | fdmfifsupp | |- ( ( ph /\ z e. ( ~P A i^i Fin ) ) -> ( F |` z ) finSupp ( 0g ` G ) ) |
| 60 | 1 46 47 50 52 53 57 59 | gsummhm | |- ( ( ph /\ z e. ( ~P A i^i Fin ) ) -> ( H gsum ( C o. ( F |` z ) ) ) = ( C ` ( G gsum ( F |` z ) ) ) ) |
| 61 | 45 60 | eqtrid | |- ( ( ph /\ z e. ( ~P A i^i Fin ) ) -> ( H gsum ( ( C o. F ) |` z ) ) = ( C ` ( G gsum ( F |` z ) ) ) ) |
| 62 | 61 | mpteq2dva | |- ( ph -> ( z e. ( ~P A i^i Fin ) |-> ( H gsum ( ( C o. F ) |` z ) ) ) = ( z e. ( ~P A i^i Fin ) |-> ( C ` ( G gsum ( F |` z ) ) ) ) ) |
| 63 | 43 62 | eqtr4d | |- ( ph -> ( C o. ( z e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` z ) ) ) ) = ( z e. ( ~P A i^i Fin ) |-> ( H gsum ( ( C o. F ) |` z ) ) ) ) |
| 64 | 63 | fveq2d | |- ( ph -> ( ( K fLimf ( ( ~P A i^i Fin ) filGen ran ( y e. ( ~P A i^i Fin ) |-> { z e. ( ~P A i^i Fin ) | y C_ z } ) ) ) ` ( C o. ( z e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` z ) ) ) ) ) = ( ( K fLimf ( ( ~P A i^i Fin ) filGen ran ( y e. ( ~P A i^i Fin ) |-> { z e. ( ~P A i^i Fin ) | y C_ z } ) ) ) ` ( z e. ( ~P A i^i Fin ) |-> ( H gsum ( ( C o. F ) |` z ) ) ) ) ) |
| 65 | 42 64 | eqtr4d | |- ( ph -> ( H tsums ( C o. F ) ) = ( ( K fLimf ( ( ~P A i^i Fin ) filGen ran ( y e. ( ~P A i^i Fin ) |-> { z e. ( ~P A i^i Fin ) | y C_ z } ) ) ) ` ( C o. ( z e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` z ) ) ) ) ) ) |
| 66 | 34 65 | eleqtrrd | |- ( ph -> ( C ` X ) e. ( H tsums ( C o. F ) ) ) |