This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A bounded monotonic nonincreasing sequence converges to the infimum of its range. (Contributed by Glauco Siliprandi, 29-Jun-2017) (Revised by AV, 15-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | climinf.3 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| climinf.4 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| climinf.5 | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℝ ) | ||
| climinf.6 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹 ‘ 𝑘 ) ) | ||
| climinf.7 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ 𝑍 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ) | ||
| Assertion | climinf | ⊢ ( 𝜑 → 𝐹 ⇝ inf ( ran 𝐹 , ℝ , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climinf.3 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | climinf.4 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | climinf.5 | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℝ ) | |
| 4 | climinf.6 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹 ‘ 𝑘 ) ) | |
| 5 | climinf.7 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ 𝑍 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ) | |
| 6 | 3 | frnd | ⊢ ( 𝜑 → ran 𝐹 ⊆ ℝ ) |
| 7 | 3 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn 𝑍 ) |
| 8 | uzid | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 9 | 2 8 | syl | ⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 10 | 9 1 | eleqtrrdi | ⊢ ( 𝜑 → 𝑀 ∈ 𝑍 ) |
| 11 | fnfvelrn | ⊢ ( ( 𝐹 Fn 𝑍 ∧ 𝑀 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑀 ) ∈ ran 𝐹 ) | |
| 12 | 7 10 11 | syl2anc | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑀 ) ∈ ran 𝐹 ) |
| 13 | 12 | ne0d | ⊢ ( 𝜑 → ran 𝐹 ≠ ∅ ) |
| 14 | breq2 | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑘 ) → ( 𝑥 ≤ 𝑦 ↔ 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ) ) | |
| 15 | 14 | ralrn | ⊢ ( 𝐹 Fn 𝑍 → ( ∀ 𝑦 ∈ ran 𝐹 𝑥 ≤ 𝑦 ↔ ∀ 𝑘 ∈ 𝑍 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ) ) |
| 16 | 15 | rexbidv | ⊢ ( 𝐹 Fn 𝑍 → ( ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝐹 𝑥 ≤ 𝑦 ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ 𝑍 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ) ) |
| 17 | 7 16 | syl | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝐹 𝑥 ≤ 𝑦 ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ 𝑍 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ) ) |
| 18 | 5 17 | mpbird | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝐹 𝑥 ≤ 𝑦 ) |
| 19 | 6 13 18 | 3jca | ⊢ ( 𝜑 → ( ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝐹 𝑥 ≤ 𝑦 ) ) |
| 20 | 19 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝐹 𝑥 ≤ 𝑦 ) ) |
| 21 | infrecl | ⊢ ( ( ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝐹 𝑥 ≤ 𝑦 ) → inf ( ran 𝐹 , ℝ , < ) ∈ ℝ ) | |
| 22 | 20 21 | syl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → inf ( ran 𝐹 , ℝ , < ) ∈ ℝ ) |
| 23 | simpr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → 𝑦 ∈ ℝ+ ) | |
| 24 | 22 23 | ltaddrpd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → inf ( ran 𝐹 , ℝ , < ) < ( inf ( ran 𝐹 , ℝ , < ) + 𝑦 ) ) |
| 25 | rpre | ⊢ ( 𝑦 ∈ ℝ+ → 𝑦 ∈ ℝ ) | |
| 26 | 25 | adantl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → 𝑦 ∈ ℝ ) |
| 27 | 22 26 | readdcld | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( inf ( ran 𝐹 , ℝ , < ) + 𝑦 ) ∈ ℝ ) |
| 28 | infrglb | ⊢ ( ( ( ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝐹 𝑥 ≤ 𝑦 ) ∧ ( inf ( ran 𝐹 , ℝ , < ) + 𝑦 ) ∈ ℝ ) → ( inf ( ran 𝐹 , ℝ , < ) < ( inf ( ran 𝐹 , ℝ , < ) + 𝑦 ) ↔ ∃ 𝑘 ∈ ran 𝐹 𝑘 < ( inf ( ran 𝐹 , ℝ , < ) + 𝑦 ) ) ) | |
| 29 | 20 27 28 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( inf ( ran 𝐹 , ℝ , < ) < ( inf ( ran 𝐹 , ℝ , < ) + 𝑦 ) ↔ ∃ 𝑘 ∈ ran 𝐹 𝑘 < ( inf ( ran 𝐹 , ℝ , < ) + 𝑦 ) ) ) |
| 30 | 24 29 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ∃ 𝑘 ∈ ran 𝐹 𝑘 < ( inf ( ran 𝐹 , ℝ , < ) + 𝑦 ) ) |
| 31 | 6 | sselda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ran 𝐹 ) → 𝑘 ∈ ℝ ) |
| 32 | 31 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑘 ∈ ran 𝐹 ) → 𝑘 ∈ ℝ ) |
| 33 | 22 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑘 ∈ ran 𝐹 ) → inf ( ran 𝐹 , ℝ , < ) ∈ ℝ ) |
| 34 | 25 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑘 ∈ ran 𝐹 ) → 𝑦 ∈ ℝ ) |
| 35 | 33 34 | readdcld | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑘 ∈ ran 𝐹 ) → ( inf ( ran 𝐹 , ℝ , < ) + 𝑦 ) ∈ ℝ ) |
| 36 | 32 35 34 | ltsub1d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑘 ∈ ran 𝐹 ) → ( 𝑘 < ( inf ( ran 𝐹 , ℝ , < ) + 𝑦 ) ↔ ( 𝑘 − 𝑦 ) < ( ( inf ( ran 𝐹 , ℝ , < ) + 𝑦 ) − 𝑦 ) ) ) |
| 37 | 6 13 18 21 | syl3anc | ⊢ ( 𝜑 → inf ( ran 𝐹 , ℝ , < ) ∈ ℝ ) |
| 38 | 37 | recnd | ⊢ ( 𝜑 → inf ( ran 𝐹 , ℝ , < ) ∈ ℂ ) |
| 39 | 38 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑘 ∈ ran 𝐹 ) → inf ( ran 𝐹 , ℝ , < ) ∈ ℂ ) |
| 40 | 34 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑘 ∈ ran 𝐹 ) → 𝑦 ∈ ℂ ) |
| 41 | 39 40 | pncand | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑘 ∈ ran 𝐹 ) → ( ( inf ( ran 𝐹 , ℝ , < ) + 𝑦 ) − 𝑦 ) = inf ( ran 𝐹 , ℝ , < ) ) |
| 42 | 41 | breq2d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑘 ∈ ran 𝐹 ) → ( ( 𝑘 − 𝑦 ) < ( ( inf ( ran 𝐹 , ℝ , < ) + 𝑦 ) − 𝑦 ) ↔ ( 𝑘 − 𝑦 ) < inf ( ran 𝐹 , ℝ , < ) ) ) |
| 43 | 36 42 | bitrd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑘 ∈ ran 𝐹 ) → ( 𝑘 < ( inf ( ran 𝐹 , ℝ , < ) + 𝑦 ) ↔ ( 𝑘 − 𝑦 ) < inf ( ran 𝐹 , ℝ , < ) ) ) |
| 44 | 43 | biimpd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑘 ∈ ran 𝐹 ) → ( 𝑘 < ( inf ( ran 𝐹 , ℝ , < ) + 𝑦 ) → ( 𝑘 − 𝑦 ) < inf ( ran 𝐹 , ℝ , < ) ) ) |
| 45 | 44 | reximdva | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( ∃ 𝑘 ∈ ran 𝐹 𝑘 < ( inf ( ran 𝐹 , ℝ , < ) + 𝑦 ) → ∃ 𝑘 ∈ ran 𝐹 ( 𝑘 − 𝑦 ) < inf ( ran 𝐹 , ℝ , < ) ) ) |
| 46 | 30 45 | mpd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ∃ 𝑘 ∈ ran 𝐹 ( 𝑘 − 𝑦 ) < inf ( ran 𝐹 , ℝ , < ) ) |
| 47 | oveq1 | ⊢ ( 𝑘 = ( 𝐹 ‘ 𝑗 ) → ( 𝑘 − 𝑦 ) = ( ( 𝐹 ‘ 𝑗 ) − 𝑦 ) ) | |
| 48 | 47 | breq1d | ⊢ ( 𝑘 = ( 𝐹 ‘ 𝑗 ) → ( ( 𝑘 − 𝑦 ) < inf ( ran 𝐹 , ℝ , < ) ↔ ( ( 𝐹 ‘ 𝑗 ) − 𝑦 ) < inf ( ran 𝐹 , ℝ , < ) ) ) |
| 49 | 48 | rexrn | ⊢ ( 𝐹 Fn 𝑍 → ( ∃ 𝑘 ∈ ran 𝐹 ( 𝑘 − 𝑦 ) < inf ( ran 𝐹 , ℝ , < ) ↔ ∃ 𝑗 ∈ 𝑍 ( ( 𝐹 ‘ 𝑗 ) − 𝑦 ) < inf ( ran 𝐹 , ℝ , < ) ) ) |
| 50 | 7 49 | syl | ⊢ ( 𝜑 → ( ∃ 𝑘 ∈ ran 𝐹 ( 𝑘 − 𝑦 ) < inf ( ran 𝐹 , ℝ , < ) ↔ ∃ 𝑗 ∈ 𝑍 ( ( 𝐹 ‘ 𝑗 ) − 𝑦 ) < inf ( ran 𝐹 , ℝ , < ) ) ) |
| 51 | 50 | biimpa | ⊢ ( ( 𝜑 ∧ ∃ 𝑘 ∈ ran 𝐹 ( 𝑘 − 𝑦 ) < inf ( ran 𝐹 , ℝ , < ) ) → ∃ 𝑗 ∈ 𝑍 ( ( 𝐹 ‘ 𝑗 ) − 𝑦 ) < inf ( ran 𝐹 , ℝ , < ) ) |
| 52 | 46 51 | syldan | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ∃ 𝑗 ∈ 𝑍 ( ( 𝐹 ‘ 𝑗 ) − 𝑦 ) < inf ( ran 𝐹 , ℝ , < ) ) |
| 53 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → 𝐹 : 𝑍 ⟶ ℝ ) |
| 54 | 1 | uztrn2 | ⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ 𝑍 ) |
| 55 | ffvelcdm | ⊢ ( ( 𝐹 : 𝑍 ⟶ ℝ ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) | |
| 56 | 53 54 55 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 57 | simpl | ⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑗 ∈ 𝑍 ) | |
| 58 | ffvelcdm | ⊢ ( ( 𝐹 : 𝑍 ⟶ ℝ ∧ 𝑗 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑗 ) ∈ ℝ ) | |
| 59 | 53 57 58 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝐹 ‘ 𝑗 ) ∈ ℝ ) |
| 60 | 37 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → inf ( ran 𝐹 , ℝ , < ) ∈ ℝ ) |
| 61 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) | |
| 62 | fzssuz | ⊢ ( 𝑗 ... 𝑘 ) ⊆ ( ℤ≥ ‘ 𝑗 ) | |
| 63 | uzss | ⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ℤ≥ ‘ 𝑗 ) ⊆ ( ℤ≥ ‘ 𝑀 ) ) | |
| 64 | 63 1 | sseqtrrdi | ⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ℤ≥ ‘ 𝑗 ) ⊆ 𝑍 ) |
| 65 | 64 1 | eleq2s | ⊢ ( 𝑗 ∈ 𝑍 → ( ℤ≥ ‘ 𝑗 ) ⊆ 𝑍 ) |
| 66 | 65 | ad2antrl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ℤ≥ ‘ 𝑗 ) ⊆ 𝑍 ) |
| 67 | 62 66 | sstrid | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝑗 ... 𝑘 ) ⊆ 𝑍 ) |
| 68 | ffvelcdm | ⊢ ( ( 𝐹 : 𝑍 ⟶ ℝ ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) ∈ ℝ ) | |
| 69 | 68 | ralrimiva | ⊢ ( 𝐹 : 𝑍 ⟶ ℝ → ∀ 𝑛 ∈ 𝑍 ( 𝐹 ‘ 𝑛 ) ∈ ℝ ) |
| 70 | 3 69 | syl | ⊢ ( 𝜑 → ∀ 𝑛 ∈ 𝑍 ( 𝐹 ‘ 𝑛 ) ∈ ℝ ) |
| 71 | 70 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ∀ 𝑛 ∈ 𝑍 ( 𝐹 ‘ 𝑛 ) ∈ ℝ ) |
| 72 | ssralv | ⊢ ( ( 𝑗 ... 𝑘 ) ⊆ 𝑍 → ( ∀ 𝑛 ∈ 𝑍 ( 𝐹 ‘ 𝑛 ) ∈ ℝ → ∀ 𝑛 ∈ ( 𝑗 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∈ ℝ ) ) | |
| 73 | 67 71 72 | sylc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ∀ 𝑛 ∈ ( 𝑗 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∈ ℝ ) |
| 74 | 73 | r19.21bi | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑛 ∈ ( 𝑗 ... 𝑘 ) ) → ( 𝐹 ‘ 𝑛 ) ∈ ℝ ) |
| 75 | fzssuz | ⊢ ( 𝑗 ... ( 𝑘 − 1 ) ) ⊆ ( ℤ≥ ‘ 𝑗 ) | |
| 76 | 75 66 | sstrid | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝑗 ... ( 𝑘 − 1 ) ) ⊆ 𝑍 ) |
| 77 | 76 | sselda | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑛 ∈ ( 𝑗 ... ( 𝑘 − 1 ) ) ) → 𝑛 ∈ 𝑍 ) |
| 78 | 4 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹 ‘ 𝑘 ) ) |
| 79 | 78 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹 ‘ 𝑘 ) ) |
| 80 | fvoveq1 | ⊢ ( 𝑘 = 𝑛 → ( 𝐹 ‘ ( 𝑘 + 1 ) ) = ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) | |
| 81 | fveq2 | ⊢ ( 𝑘 = 𝑛 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑛 ) ) | |
| 82 | 80 81 | breq12d | ⊢ ( 𝑘 = 𝑛 → ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹 ‘ 𝑘 ) ↔ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ≤ ( 𝐹 ‘ 𝑛 ) ) ) |
| 83 | 82 | rspccva | ⊢ ( ( ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹 ‘ 𝑘 ) ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ≤ ( 𝐹 ‘ 𝑛 ) ) |
| 84 | 79 83 | sylan | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ≤ ( 𝐹 ‘ 𝑛 ) ) |
| 85 | 77 84 | syldan | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑛 ∈ ( 𝑗 ... ( 𝑘 − 1 ) ) ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ≤ ( 𝐹 ‘ 𝑛 ) ) |
| 86 | 61 74 85 | monoord2 | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝐹 ‘ 𝑘 ) ≤ ( 𝐹 ‘ 𝑗 ) ) |
| 87 | 56 59 60 86 | lesub1dd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( 𝐹 ‘ 𝑘 ) − inf ( ran 𝐹 , ℝ , < ) ) ≤ ( ( 𝐹 ‘ 𝑗 ) − inf ( ran 𝐹 , ℝ , < ) ) ) |
| 88 | 56 60 | resubcld | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( 𝐹 ‘ 𝑘 ) − inf ( ran 𝐹 , ℝ , < ) ) ∈ ℝ ) |
| 89 | 59 60 | resubcld | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( 𝐹 ‘ 𝑗 ) − inf ( ran 𝐹 , ℝ , < ) ) ∈ ℝ ) |
| 90 | 25 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝑦 ∈ ℝ ) |
| 91 | lelttr | ⊢ ( ( ( ( 𝐹 ‘ 𝑘 ) − inf ( ran 𝐹 , ℝ , < ) ) ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑗 ) − inf ( ran 𝐹 , ℝ , < ) ) ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( ( ( 𝐹 ‘ 𝑘 ) − inf ( ran 𝐹 , ℝ , < ) ) ≤ ( ( 𝐹 ‘ 𝑗 ) − inf ( ran 𝐹 , ℝ , < ) ) ∧ ( ( 𝐹 ‘ 𝑗 ) − inf ( ran 𝐹 , ℝ , < ) ) < 𝑦 ) → ( ( 𝐹 ‘ 𝑘 ) − inf ( ran 𝐹 , ℝ , < ) ) < 𝑦 ) ) | |
| 92 | 88 89 90 91 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( ( ( 𝐹 ‘ 𝑘 ) − inf ( ran 𝐹 , ℝ , < ) ) ≤ ( ( 𝐹 ‘ 𝑗 ) − inf ( ran 𝐹 , ℝ , < ) ) ∧ ( ( 𝐹 ‘ 𝑗 ) − inf ( ran 𝐹 , ℝ , < ) ) < 𝑦 ) → ( ( 𝐹 ‘ 𝑘 ) − inf ( ran 𝐹 , ℝ , < ) ) < 𝑦 ) ) |
| 93 | 87 92 | mpand | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( ( 𝐹 ‘ 𝑗 ) − inf ( ran 𝐹 , ℝ , < ) ) < 𝑦 → ( ( 𝐹 ‘ 𝑘 ) − inf ( ran 𝐹 , ℝ , < ) ) < 𝑦 ) ) |
| 94 | ltsub23 | ⊢ ( ( ( 𝐹 ‘ 𝑗 ) ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ inf ( ran 𝐹 , ℝ , < ) ∈ ℝ ) → ( ( ( 𝐹 ‘ 𝑗 ) − 𝑦 ) < inf ( ran 𝐹 , ℝ , < ) ↔ ( ( 𝐹 ‘ 𝑗 ) − inf ( ran 𝐹 , ℝ , < ) ) < 𝑦 ) ) | |
| 95 | 59 90 60 94 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( ( 𝐹 ‘ 𝑗 ) − 𝑦 ) < inf ( ran 𝐹 , ℝ , < ) ↔ ( ( 𝐹 ‘ 𝑗 ) − inf ( ran 𝐹 , ℝ , < ) ) < 𝑦 ) ) |
| 96 | 6 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ran 𝐹 ⊆ ℝ ) |
| 97 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → 𝐹 Fn 𝑍 ) |
| 98 | fnfvelrn | ⊢ ( ( 𝐹 Fn 𝑍 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ran 𝐹 ) | |
| 99 | 97 54 98 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ran 𝐹 ) |
| 100 | 96 99 | sseldd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 101 | 18 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝐹 𝑥 ≤ 𝑦 ) |
| 102 | infrelb | ⊢ ( ( ran 𝐹 ⊆ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝐹 𝑥 ≤ 𝑦 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ran 𝐹 ) → inf ( ran 𝐹 , ℝ , < ) ≤ ( 𝐹 ‘ 𝑘 ) ) | |
| 103 | 96 101 99 102 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → inf ( ran 𝐹 , ℝ , < ) ≤ ( 𝐹 ‘ 𝑘 ) ) |
| 104 | 60 100 103 | abssubge0d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − inf ( ran 𝐹 , ℝ , < ) ) ) = ( ( 𝐹 ‘ 𝑘 ) − inf ( ran 𝐹 , ℝ , < ) ) ) |
| 105 | 104 | breq1d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − inf ( ran 𝐹 , ℝ , < ) ) ) < 𝑦 ↔ ( ( 𝐹 ‘ 𝑘 ) − inf ( ran 𝐹 , ℝ , < ) ) < 𝑦 ) ) |
| 106 | 93 95 105 | 3imtr4d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( ( 𝐹 ‘ 𝑗 ) − 𝑦 ) < inf ( ran 𝐹 , ℝ , < ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − inf ( ran 𝐹 , ℝ , < ) ) ) < 𝑦 ) ) |
| 107 | 106 | anassrs | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( ( 𝐹 ‘ 𝑗 ) − 𝑦 ) < inf ( ran 𝐹 , ℝ , < ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − inf ( ran 𝐹 , ℝ , < ) ) ) < 𝑦 ) ) |
| 108 | 107 | ralrimdva | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) → ( ( ( 𝐹 ‘ 𝑗 ) − 𝑦 ) < inf ( ran 𝐹 , ℝ , < ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − inf ( ran 𝐹 , ℝ , < ) ) ) < 𝑦 ) ) |
| 109 | 108 | reximdva | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( ∃ 𝑗 ∈ 𝑍 ( ( 𝐹 ‘ 𝑗 ) − 𝑦 ) < inf ( ran 𝐹 , ℝ , < ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − inf ( ran 𝐹 , ℝ , < ) ) ) < 𝑦 ) ) |
| 110 | 52 109 | mpd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − inf ( ran 𝐹 , ℝ , < ) ) ) < 𝑦 ) |
| 111 | 110 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑦 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − inf ( ran 𝐹 , ℝ , < ) ) ) < 𝑦 ) |
| 112 | 1 | fvexi | ⊢ 𝑍 ∈ V |
| 113 | fex | ⊢ ( ( 𝐹 : 𝑍 ⟶ ℝ ∧ 𝑍 ∈ V ) → 𝐹 ∈ V ) | |
| 114 | 3 112 113 | sylancl | ⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 115 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 116 | 3 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 117 | 116 | recnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 118 | 1 2 114 115 38 117 | clim2c | ⊢ ( 𝜑 → ( 𝐹 ⇝ inf ( ran 𝐹 , ℝ , < ) ↔ ∀ 𝑦 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − inf ( ran 𝐹 , ℝ , < ) ) ) < 𝑦 ) ) |
| 119 | 111 118 | mpbird | ⊢ ( 𝜑 → 𝐹 ⇝ inf ( ran 𝐹 , ℝ , < ) ) |