This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sequence A converges to a positive real. This proves that the Stirling's formula converges to the factorial, up to a constant. In another theorem, using Wallis' formula for π& , such constant is exactly determined, thus proving the Stirling's formula. (Contributed by Glauco Siliprandi, 29-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | stirlinglem14.1 | ⊢ 𝐴 = ( 𝑛 ∈ ℕ ↦ ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ) | |
| stirlinglem14.2 | ⊢ 𝐵 = ( 𝑛 ∈ ℕ ↦ ( log ‘ ( 𝐴 ‘ 𝑛 ) ) ) | ||
| Assertion | stirlinglem14 | ⊢ ∃ 𝑐 ∈ ℝ+ 𝐴 ⇝ 𝑐 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | stirlinglem14.1 | ⊢ 𝐴 = ( 𝑛 ∈ ℕ ↦ ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ) | |
| 2 | stirlinglem14.2 | ⊢ 𝐵 = ( 𝑛 ∈ ℕ ↦ ( log ‘ ( 𝐴 ‘ 𝑛 ) ) ) | |
| 3 | 1 2 | stirlinglem13 | ⊢ ∃ 𝑑 ∈ ℝ 𝐵 ⇝ 𝑑 |
| 4 | simpl | ⊢ ( ( 𝑑 ∈ ℝ ∧ 𝐵 ⇝ 𝑑 ) → 𝑑 ∈ ℝ ) | |
| 5 | 4 | rpefcld | ⊢ ( ( 𝑑 ∈ ℝ ∧ 𝐵 ⇝ 𝑑 ) → ( exp ‘ 𝑑 ) ∈ ℝ+ ) |
| 6 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 7 | 1zzd | ⊢ ( ( 𝑑 ∈ ℝ ∧ 𝐵 ⇝ 𝑑 ) → 1 ∈ ℤ ) | |
| 8 | efcn | ⊢ exp ∈ ( ℂ –cn→ ℂ ) | |
| 9 | 8 | a1i | ⊢ ( ( 𝑑 ∈ ℝ ∧ 𝐵 ⇝ 𝑑 ) → exp ∈ ( ℂ –cn→ ℂ ) ) |
| 10 | nnnn0 | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ0 ) | |
| 11 | faccl | ⊢ ( 𝑛 ∈ ℕ0 → ( ! ‘ 𝑛 ) ∈ ℕ ) | |
| 12 | nncn | ⊢ ( ( ! ‘ 𝑛 ) ∈ ℕ → ( ! ‘ 𝑛 ) ∈ ℂ ) | |
| 13 | 10 11 12 | 3syl | ⊢ ( 𝑛 ∈ ℕ → ( ! ‘ 𝑛 ) ∈ ℂ ) |
| 14 | 2cnd | ⊢ ( 𝑛 ∈ ℕ → 2 ∈ ℂ ) | |
| 15 | nncn | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℂ ) | |
| 16 | 14 15 | mulcld | ⊢ ( 𝑛 ∈ ℕ → ( 2 · 𝑛 ) ∈ ℂ ) |
| 17 | 16 | sqrtcld | ⊢ ( 𝑛 ∈ ℕ → ( √ ‘ ( 2 · 𝑛 ) ) ∈ ℂ ) |
| 18 | epr | ⊢ e ∈ ℝ+ | |
| 19 | rpcn | ⊢ ( e ∈ ℝ+ → e ∈ ℂ ) | |
| 20 | 18 19 | ax-mp | ⊢ e ∈ ℂ |
| 21 | 20 | a1i | ⊢ ( 𝑛 ∈ ℕ → e ∈ ℂ ) |
| 22 | 0re | ⊢ 0 ∈ ℝ | |
| 23 | epos | ⊢ 0 < e | |
| 24 | 22 23 | gtneii | ⊢ e ≠ 0 |
| 25 | 24 | a1i | ⊢ ( 𝑛 ∈ ℕ → e ≠ 0 ) |
| 26 | 15 21 25 | divcld | ⊢ ( 𝑛 ∈ ℕ → ( 𝑛 / e ) ∈ ℂ ) |
| 27 | 26 10 | expcld | ⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 / e ) ↑ 𝑛 ) ∈ ℂ ) |
| 28 | 17 27 | mulcld | ⊢ ( 𝑛 ∈ ℕ → ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ∈ ℂ ) |
| 29 | 2rp | ⊢ 2 ∈ ℝ+ | |
| 30 | 29 | a1i | ⊢ ( 𝑛 ∈ ℕ → 2 ∈ ℝ+ ) |
| 31 | nnrp | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ+ ) | |
| 32 | 30 31 | rpmulcld | ⊢ ( 𝑛 ∈ ℕ → ( 2 · 𝑛 ) ∈ ℝ+ ) |
| 33 | 32 | sqrtgt0d | ⊢ ( 𝑛 ∈ ℕ → 0 < ( √ ‘ ( 2 · 𝑛 ) ) ) |
| 34 | 33 | gt0ne0d | ⊢ ( 𝑛 ∈ ℕ → ( √ ‘ ( 2 · 𝑛 ) ) ≠ 0 ) |
| 35 | nnne0 | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ≠ 0 ) | |
| 36 | 15 21 35 25 | divne0d | ⊢ ( 𝑛 ∈ ℕ → ( 𝑛 / e ) ≠ 0 ) |
| 37 | nnz | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℤ ) | |
| 38 | 26 36 37 | expne0d | ⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 / e ) ↑ 𝑛 ) ≠ 0 ) |
| 39 | 17 27 34 38 | mulne0d | ⊢ ( 𝑛 ∈ ℕ → ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ≠ 0 ) |
| 40 | 13 28 39 | divcld | ⊢ ( 𝑛 ∈ ℕ → ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ∈ ℂ ) |
| 41 | 1 | fvmpt2 | ⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ∈ ℂ ) → ( 𝐴 ‘ 𝑛 ) = ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ) |
| 42 | 40 41 | mpdan | ⊢ ( 𝑛 ∈ ℕ → ( 𝐴 ‘ 𝑛 ) = ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ) |
| 43 | 42 40 | eqeltrd | ⊢ ( 𝑛 ∈ ℕ → ( 𝐴 ‘ 𝑛 ) ∈ ℂ ) |
| 44 | nnne0 | ⊢ ( ( ! ‘ 𝑛 ) ∈ ℕ → ( ! ‘ 𝑛 ) ≠ 0 ) | |
| 45 | 10 11 44 | 3syl | ⊢ ( 𝑛 ∈ ℕ → ( ! ‘ 𝑛 ) ≠ 0 ) |
| 46 | 13 28 45 39 | divne0d | ⊢ ( 𝑛 ∈ ℕ → ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ≠ 0 ) |
| 47 | 42 46 | eqnetrd | ⊢ ( 𝑛 ∈ ℕ → ( 𝐴 ‘ 𝑛 ) ≠ 0 ) |
| 48 | 43 47 | logcld | ⊢ ( 𝑛 ∈ ℕ → ( log ‘ ( 𝐴 ‘ 𝑛 ) ) ∈ ℂ ) |
| 49 | 2 48 | fmpti | ⊢ 𝐵 : ℕ ⟶ ℂ |
| 50 | 49 | a1i | ⊢ ( ( 𝑑 ∈ ℝ ∧ 𝐵 ⇝ 𝑑 ) → 𝐵 : ℕ ⟶ ℂ ) |
| 51 | simpr | ⊢ ( ( 𝑑 ∈ ℝ ∧ 𝐵 ⇝ 𝑑 ) → 𝐵 ⇝ 𝑑 ) | |
| 52 | 4 | recnd | ⊢ ( ( 𝑑 ∈ ℝ ∧ 𝐵 ⇝ 𝑑 ) → 𝑑 ∈ ℂ ) |
| 53 | 6 7 9 50 51 52 | climcncf | ⊢ ( ( 𝑑 ∈ ℝ ∧ 𝐵 ⇝ 𝑑 ) → ( exp ∘ 𝐵 ) ⇝ ( exp ‘ 𝑑 ) ) |
| 54 | 8 | elexi | ⊢ exp ∈ V |
| 55 | nnex | ⊢ ℕ ∈ V | |
| 56 | 55 | mptex | ⊢ ( 𝑛 ∈ ℕ ↦ ( log ‘ ( 𝐴 ‘ 𝑛 ) ) ) ∈ V |
| 57 | 2 56 | eqeltri | ⊢ 𝐵 ∈ V |
| 58 | 54 57 | coex | ⊢ ( exp ∘ 𝐵 ) ∈ V |
| 59 | 58 | a1i | ⊢ ( ⊤ → ( exp ∘ 𝐵 ) ∈ V ) |
| 60 | 55 | mptex | ⊢ ( 𝑛 ∈ ℕ ↦ ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ) ∈ V |
| 61 | 1 60 | eqeltri | ⊢ 𝐴 ∈ V |
| 62 | 61 | a1i | ⊢ ( ⊤ → 𝐴 ∈ V ) |
| 63 | 1zzd | ⊢ ( ⊤ → 1 ∈ ℤ ) | |
| 64 | 2 | funmpt2 | ⊢ Fun 𝐵 |
| 65 | id | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ ) | |
| 66 | rabid2 | ⊢ ( ℕ = { 𝑛 ∈ ℕ ∣ ( log ‘ ( 𝐴 ‘ 𝑛 ) ) ∈ V } ↔ ∀ 𝑛 ∈ ℕ ( log ‘ ( 𝐴 ‘ 𝑛 ) ) ∈ V ) | |
| 67 | 1 | stirlinglem2 | ⊢ ( 𝑛 ∈ ℕ → ( 𝐴 ‘ 𝑛 ) ∈ ℝ+ ) |
| 68 | relogcl | ⊢ ( ( 𝐴 ‘ 𝑛 ) ∈ ℝ+ → ( log ‘ ( 𝐴 ‘ 𝑛 ) ) ∈ ℝ ) | |
| 69 | elex | ⊢ ( ( log ‘ ( 𝐴 ‘ 𝑛 ) ) ∈ ℝ → ( log ‘ ( 𝐴 ‘ 𝑛 ) ) ∈ V ) | |
| 70 | 67 68 69 | 3syl | ⊢ ( 𝑛 ∈ ℕ → ( log ‘ ( 𝐴 ‘ 𝑛 ) ) ∈ V ) |
| 71 | 66 70 | mprgbir | ⊢ ℕ = { 𝑛 ∈ ℕ ∣ ( log ‘ ( 𝐴 ‘ 𝑛 ) ) ∈ V } |
| 72 | 2 | dmmpt | ⊢ dom 𝐵 = { 𝑛 ∈ ℕ ∣ ( log ‘ ( 𝐴 ‘ 𝑛 ) ) ∈ V } |
| 73 | 71 72 | eqtr4i | ⊢ ℕ = dom 𝐵 |
| 74 | 65 73 | eleqtrdi | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ dom 𝐵 ) |
| 75 | fvco | ⊢ ( ( Fun 𝐵 ∧ 𝑘 ∈ dom 𝐵 ) → ( ( exp ∘ 𝐵 ) ‘ 𝑘 ) = ( exp ‘ ( 𝐵 ‘ 𝑘 ) ) ) | |
| 76 | 64 74 75 | sylancr | ⊢ ( 𝑘 ∈ ℕ → ( ( exp ∘ 𝐵 ) ‘ 𝑘 ) = ( exp ‘ ( 𝐵 ‘ 𝑘 ) ) ) |
| 77 | 1 | a1i | ⊢ ( 𝑘 ∈ ℕ → 𝐴 = ( 𝑛 ∈ ℕ ↦ ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ) ) |
| 78 | simpr | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑛 = 𝑘 ) → 𝑛 = 𝑘 ) | |
| 79 | 78 | fveq2d | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑛 = 𝑘 ) → ( ! ‘ 𝑛 ) = ( ! ‘ 𝑘 ) ) |
| 80 | 78 | oveq2d | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑛 = 𝑘 ) → ( 2 · 𝑛 ) = ( 2 · 𝑘 ) ) |
| 81 | 80 | fveq2d | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑛 = 𝑘 ) → ( √ ‘ ( 2 · 𝑛 ) ) = ( √ ‘ ( 2 · 𝑘 ) ) ) |
| 82 | 78 | oveq1d | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑛 = 𝑘 ) → ( 𝑛 / e ) = ( 𝑘 / e ) ) |
| 83 | 82 78 | oveq12d | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑛 = 𝑘 ) → ( ( 𝑛 / e ) ↑ 𝑛 ) = ( ( 𝑘 / e ) ↑ 𝑘 ) ) |
| 84 | 81 83 | oveq12d | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑛 = 𝑘 ) → ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) = ( ( √ ‘ ( 2 · 𝑘 ) ) · ( ( 𝑘 / e ) ↑ 𝑘 ) ) ) |
| 85 | 79 84 | oveq12d | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑛 = 𝑘 ) → ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) = ( ( ! ‘ 𝑘 ) / ( ( √ ‘ ( 2 · 𝑘 ) ) · ( ( 𝑘 / e ) ↑ 𝑘 ) ) ) ) |
| 86 | nnnn0 | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ0 ) | |
| 87 | faccl | ⊢ ( 𝑘 ∈ ℕ0 → ( ! ‘ 𝑘 ) ∈ ℕ ) | |
| 88 | nncn | ⊢ ( ( ! ‘ 𝑘 ) ∈ ℕ → ( ! ‘ 𝑘 ) ∈ ℂ ) | |
| 89 | 86 87 88 | 3syl | ⊢ ( 𝑘 ∈ ℕ → ( ! ‘ 𝑘 ) ∈ ℂ ) |
| 90 | 2cnd | ⊢ ( 𝑘 ∈ ℕ → 2 ∈ ℂ ) | |
| 91 | nncn | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℂ ) | |
| 92 | 90 91 | mulcld | ⊢ ( 𝑘 ∈ ℕ → ( 2 · 𝑘 ) ∈ ℂ ) |
| 93 | 92 | sqrtcld | ⊢ ( 𝑘 ∈ ℕ → ( √ ‘ ( 2 · 𝑘 ) ) ∈ ℂ ) |
| 94 | 20 | a1i | ⊢ ( 𝑘 ∈ ℕ → e ∈ ℂ ) |
| 95 | 24 | a1i | ⊢ ( 𝑘 ∈ ℕ → e ≠ 0 ) |
| 96 | 91 94 95 | divcld | ⊢ ( 𝑘 ∈ ℕ → ( 𝑘 / e ) ∈ ℂ ) |
| 97 | 96 86 | expcld | ⊢ ( 𝑘 ∈ ℕ → ( ( 𝑘 / e ) ↑ 𝑘 ) ∈ ℂ ) |
| 98 | 93 97 | mulcld | ⊢ ( 𝑘 ∈ ℕ → ( ( √ ‘ ( 2 · 𝑘 ) ) · ( ( 𝑘 / e ) ↑ 𝑘 ) ) ∈ ℂ ) |
| 99 | 29 | a1i | ⊢ ( 𝑘 ∈ ℕ → 2 ∈ ℝ+ ) |
| 100 | nnrp | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℝ+ ) | |
| 101 | 99 100 | rpmulcld | ⊢ ( 𝑘 ∈ ℕ → ( 2 · 𝑘 ) ∈ ℝ+ ) |
| 102 | 101 | sqrtgt0d | ⊢ ( 𝑘 ∈ ℕ → 0 < ( √ ‘ ( 2 · 𝑘 ) ) ) |
| 103 | 102 | gt0ne0d | ⊢ ( 𝑘 ∈ ℕ → ( √ ‘ ( 2 · 𝑘 ) ) ≠ 0 ) |
| 104 | nnne0 | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ≠ 0 ) | |
| 105 | 91 94 104 95 | divne0d | ⊢ ( 𝑘 ∈ ℕ → ( 𝑘 / e ) ≠ 0 ) |
| 106 | nnz | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℤ ) | |
| 107 | 96 105 106 | expne0d | ⊢ ( 𝑘 ∈ ℕ → ( ( 𝑘 / e ) ↑ 𝑘 ) ≠ 0 ) |
| 108 | 93 97 103 107 | mulne0d | ⊢ ( 𝑘 ∈ ℕ → ( ( √ ‘ ( 2 · 𝑘 ) ) · ( ( 𝑘 / e ) ↑ 𝑘 ) ) ≠ 0 ) |
| 109 | 89 98 108 | divcld | ⊢ ( 𝑘 ∈ ℕ → ( ( ! ‘ 𝑘 ) / ( ( √ ‘ ( 2 · 𝑘 ) ) · ( ( 𝑘 / e ) ↑ 𝑘 ) ) ) ∈ ℂ ) |
| 110 | 77 85 65 109 | fvmptd | ⊢ ( 𝑘 ∈ ℕ → ( 𝐴 ‘ 𝑘 ) = ( ( ! ‘ 𝑘 ) / ( ( √ ‘ ( 2 · 𝑘 ) ) · ( ( 𝑘 / e ) ↑ 𝑘 ) ) ) ) |
| 111 | 110 109 | eqeltrd | ⊢ ( 𝑘 ∈ ℕ → ( 𝐴 ‘ 𝑘 ) ∈ ℂ ) |
| 112 | nnne0 | ⊢ ( ( ! ‘ 𝑘 ) ∈ ℕ → ( ! ‘ 𝑘 ) ≠ 0 ) | |
| 113 | 86 87 112 | 3syl | ⊢ ( 𝑘 ∈ ℕ → ( ! ‘ 𝑘 ) ≠ 0 ) |
| 114 | 89 98 113 108 | divne0d | ⊢ ( 𝑘 ∈ ℕ → ( ( ! ‘ 𝑘 ) / ( ( √ ‘ ( 2 · 𝑘 ) ) · ( ( 𝑘 / e ) ↑ 𝑘 ) ) ) ≠ 0 ) |
| 115 | 110 114 | eqnetrd | ⊢ ( 𝑘 ∈ ℕ → ( 𝐴 ‘ 𝑘 ) ≠ 0 ) |
| 116 | 111 115 | logcld | ⊢ ( 𝑘 ∈ ℕ → ( log ‘ ( 𝐴 ‘ 𝑘 ) ) ∈ ℂ ) |
| 117 | nfcv | ⊢ Ⅎ 𝑛 𝑘 | |
| 118 | nfcv | ⊢ Ⅎ 𝑛 log | |
| 119 | nfmpt1 | ⊢ Ⅎ 𝑛 ( 𝑛 ∈ ℕ ↦ ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ) | |
| 120 | 1 119 | nfcxfr | ⊢ Ⅎ 𝑛 𝐴 |
| 121 | 120 117 | nffv | ⊢ Ⅎ 𝑛 ( 𝐴 ‘ 𝑘 ) |
| 122 | 118 121 | nffv | ⊢ Ⅎ 𝑛 ( log ‘ ( 𝐴 ‘ 𝑘 ) ) |
| 123 | 2fveq3 | ⊢ ( 𝑛 = 𝑘 → ( log ‘ ( 𝐴 ‘ 𝑛 ) ) = ( log ‘ ( 𝐴 ‘ 𝑘 ) ) ) | |
| 124 | 117 122 123 2 | fvmptf | ⊢ ( ( 𝑘 ∈ ℕ ∧ ( log ‘ ( 𝐴 ‘ 𝑘 ) ) ∈ ℂ ) → ( 𝐵 ‘ 𝑘 ) = ( log ‘ ( 𝐴 ‘ 𝑘 ) ) ) |
| 125 | 116 124 | mpdan | ⊢ ( 𝑘 ∈ ℕ → ( 𝐵 ‘ 𝑘 ) = ( log ‘ ( 𝐴 ‘ 𝑘 ) ) ) |
| 126 | 125 | fveq2d | ⊢ ( 𝑘 ∈ ℕ → ( exp ‘ ( 𝐵 ‘ 𝑘 ) ) = ( exp ‘ ( log ‘ ( 𝐴 ‘ 𝑘 ) ) ) ) |
| 127 | eflog | ⊢ ( ( ( 𝐴 ‘ 𝑘 ) ∈ ℂ ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) → ( exp ‘ ( log ‘ ( 𝐴 ‘ 𝑘 ) ) ) = ( 𝐴 ‘ 𝑘 ) ) | |
| 128 | 111 115 127 | syl2anc | ⊢ ( 𝑘 ∈ ℕ → ( exp ‘ ( log ‘ ( 𝐴 ‘ 𝑘 ) ) ) = ( 𝐴 ‘ 𝑘 ) ) |
| 129 | 76 126 128 | 3eqtrd | ⊢ ( 𝑘 ∈ ℕ → ( ( exp ∘ 𝐵 ) ‘ 𝑘 ) = ( 𝐴 ‘ 𝑘 ) ) |
| 130 | 129 | adantl | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( ( exp ∘ 𝐵 ) ‘ 𝑘 ) = ( 𝐴 ‘ 𝑘 ) ) |
| 131 | 6 59 62 63 130 | climeq | ⊢ ( ⊤ → ( ( exp ∘ 𝐵 ) ⇝ ( exp ‘ 𝑑 ) ↔ 𝐴 ⇝ ( exp ‘ 𝑑 ) ) ) |
| 132 | 131 | mptru | ⊢ ( ( exp ∘ 𝐵 ) ⇝ ( exp ‘ 𝑑 ) ↔ 𝐴 ⇝ ( exp ‘ 𝑑 ) ) |
| 133 | 53 132 | sylib | ⊢ ( ( 𝑑 ∈ ℝ ∧ 𝐵 ⇝ 𝑑 ) → 𝐴 ⇝ ( exp ‘ 𝑑 ) ) |
| 134 | breq2 | ⊢ ( 𝑐 = ( exp ‘ 𝑑 ) → ( 𝐴 ⇝ 𝑐 ↔ 𝐴 ⇝ ( exp ‘ 𝑑 ) ) ) | |
| 135 | 134 | rspcev | ⊢ ( ( ( exp ‘ 𝑑 ) ∈ ℝ+ ∧ 𝐴 ⇝ ( exp ‘ 𝑑 ) ) → ∃ 𝑐 ∈ ℝ+ 𝐴 ⇝ 𝑐 ) |
| 136 | 5 133 135 | syl2anc | ⊢ ( ( 𝑑 ∈ ℝ ∧ 𝐵 ⇝ 𝑑 ) → ∃ 𝑐 ∈ ℝ+ 𝐴 ⇝ 𝑐 ) |
| 137 | 136 | rexlimiva | ⊢ ( ∃ 𝑑 ∈ ℝ 𝐵 ⇝ 𝑑 → ∃ 𝑐 ∈ ℝ+ 𝐴 ⇝ 𝑐 ) |
| 138 | 3 137 | ax-mp | ⊢ ∃ 𝑐 ∈ ℝ+ 𝐴 ⇝ 𝑐 |