This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Separate out the first four terms of the infinite series expansion of the sine of a real number. (Contributed by Paul Chapman, 19-Jan-2008) (Revised by Mario Carneiro, 30-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | efi4p.1 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) | |
| Assertion | resin4p | ⊢ ( 𝐴 ∈ ℝ → ( sin ‘ 𝐴 ) = ( ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) + ( ℑ ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( 𝐹 ‘ 𝑘 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efi4p.1 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) | |
| 2 | resinval | ⊢ ( 𝐴 ∈ ℝ → ( sin ‘ 𝐴 ) = ( ℑ ‘ ( exp ‘ ( i · 𝐴 ) ) ) ) | |
| 3 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 4 | 1 | efi4p | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( i · 𝐴 ) ) = ( ( ( 1 − ( ( 𝐴 ↑ 2 ) / 2 ) ) + ( i · ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) ) ) + Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( 𝐹 ‘ 𝑘 ) ) ) |
| 5 | 3 4 | syl | ⊢ ( 𝐴 ∈ ℝ → ( exp ‘ ( i · 𝐴 ) ) = ( ( ( 1 − ( ( 𝐴 ↑ 2 ) / 2 ) ) + ( i · ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) ) ) + Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( 𝐹 ‘ 𝑘 ) ) ) |
| 6 | 5 | fveq2d | ⊢ ( 𝐴 ∈ ℝ → ( ℑ ‘ ( exp ‘ ( i · 𝐴 ) ) ) = ( ℑ ‘ ( ( ( 1 − ( ( 𝐴 ↑ 2 ) / 2 ) ) + ( i · ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) ) ) + Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 7 | 1re | ⊢ 1 ∈ ℝ | |
| 8 | resqcl | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ↑ 2 ) ∈ ℝ ) | |
| 9 | 8 | rehalfcld | ⊢ ( 𝐴 ∈ ℝ → ( ( 𝐴 ↑ 2 ) / 2 ) ∈ ℝ ) |
| 10 | resubcl | ⊢ ( ( 1 ∈ ℝ ∧ ( ( 𝐴 ↑ 2 ) / 2 ) ∈ ℝ ) → ( 1 − ( ( 𝐴 ↑ 2 ) / 2 ) ) ∈ ℝ ) | |
| 11 | 7 9 10 | sylancr | ⊢ ( 𝐴 ∈ ℝ → ( 1 − ( ( 𝐴 ↑ 2 ) / 2 ) ) ∈ ℝ ) |
| 12 | 11 | recnd | ⊢ ( 𝐴 ∈ ℝ → ( 1 − ( ( 𝐴 ↑ 2 ) / 2 ) ) ∈ ℂ ) |
| 13 | ax-icn | ⊢ i ∈ ℂ | |
| 14 | 3nn0 | ⊢ 3 ∈ ℕ0 | |
| 15 | reexpcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 3 ∈ ℕ0 ) → ( 𝐴 ↑ 3 ) ∈ ℝ ) | |
| 16 | 14 15 | mpan2 | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ↑ 3 ) ∈ ℝ ) |
| 17 | 6re | ⊢ 6 ∈ ℝ | |
| 18 | 6pos | ⊢ 0 < 6 | |
| 19 | 17 18 | gt0ne0ii | ⊢ 6 ≠ 0 |
| 20 | redivcl | ⊢ ( ( ( 𝐴 ↑ 3 ) ∈ ℝ ∧ 6 ∈ ℝ ∧ 6 ≠ 0 ) → ( ( 𝐴 ↑ 3 ) / 6 ) ∈ ℝ ) | |
| 21 | 17 19 20 | mp3an23 | ⊢ ( ( 𝐴 ↑ 3 ) ∈ ℝ → ( ( 𝐴 ↑ 3 ) / 6 ) ∈ ℝ ) |
| 22 | 16 21 | syl | ⊢ ( 𝐴 ∈ ℝ → ( ( 𝐴 ↑ 3 ) / 6 ) ∈ ℝ ) |
| 23 | resubcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝐴 ↑ 3 ) / 6 ) ∈ ℝ ) → ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) ∈ ℝ ) | |
| 24 | 22 23 | mpdan | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) ∈ ℝ ) |
| 25 | 24 | recnd | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) ∈ ℂ ) |
| 26 | mulcl | ⊢ ( ( i ∈ ℂ ∧ ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) ∈ ℂ ) → ( i · ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) ) ∈ ℂ ) | |
| 27 | 13 25 26 | sylancr | ⊢ ( 𝐴 ∈ ℝ → ( i · ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) ) ∈ ℂ ) |
| 28 | 12 27 | addcld | ⊢ ( 𝐴 ∈ ℝ → ( ( 1 − ( ( 𝐴 ↑ 2 ) / 2 ) ) + ( i · ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) ) ) ∈ ℂ ) |
| 29 | mulcl | ⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · 𝐴 ) ∈ ℂ ) | |
| 30 | 13 3 29 | sylancr | ⊢ ( 𝐴 ∈ ℝ → ( i · 𝐴 ) ∈ ℂ ) |
| 31 | 4nn0 | ⊢ 4 ∈ ℕ0 | |
| 32 | 1 | eftlcl | ⊢ ( ( ( i · 𝐴 ) ∈ ℂ ∧ 4 ∈ ℕ0 ) → Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 33 | 30 31 32 | sylancl | ⊢ ( 𝐴 ∈ ℝ → Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 34 | 28 33 | imaddd | ⊢ ( 𝐴 ∈ ℝ → ( ℑ ‘ ( ( ( 1 − ( ( 𝐴 ↑ 2 ) / 2 ) ) + ( i · ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) ) ) + Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( 𝐹 ‘ 𝑘 ) ) ) = ( ( ℑ ‘ ( ( 1 − ( ( 𝐴 ↑ 2 ) / 2 ) ) + ( i · ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) ) ) ) + ( ℑ ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 35 | 11 24 | crimd | ⊢ ( 𝐴 ∈ ℝ → ( ℑ ‘ ( ( 1 − ( ( 𝐴 ↑ 2 ) / 2 ) ) + ( i · ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) ) ) ) = ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) ) |
| 36 | 35 | oveq1d | ⊢ ( 𝐴 ∈ ℝ → ( ( ℑ ‘ ( ( 1 − ( ( 𝐴 ↑ 2 ) / 2 ) ) + ( i · ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) ) ) ) + ( ℑ ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( 𝐹 ‘ 𝑘 ) ) ) = ( ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) + ( ℑ ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 37 | 6 34 36 | 3eqtrd | ⊢ ( 𝐴 ∈ ℝ → ( ℑ ‘ ( exp ‘ ( i · 𝐴 ) ) ) = ( ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) + ( ℑ ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 38 | 2 37 | eqtrd | ⊢ ( 𝐴 ∈ ℝ → ( sin ‘ 𝐴 ) = ( ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) + ( ℑ ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( 𝐹 ‘ 𝑘 ) ) ) ) |