This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Induction on the upper set of integers that starts at an integer M . The first four hypotheses give us the substitution instances we need, and the last two are the basis and the induction step. (Contributed by NM, 7-Sep-2005)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uzind4.1 | ⊢ ( 𝑗 = 𝑀 → ( 𝜑 ↔ 𝜓 ) ) | |
| uzind4.2 | ⊢ ( 𝑗 = 𝑘 → ( 𝜑 ↔ 𝜒 ) ) | ||
| uzind4.3 | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( 𝜑 ↔ 𝜃 ) ) | ||
| uzind4.4 | ⊢ ( 𝑗 = 𝑁 → ( 𝜑 ↔ 𝜏 ) ) | ||
| uzind4.5 | ⊢ ( 𝑀 ∈ ℤ → 𝜓 ) | ||
| uzind4.6 | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝜒 → 𝜃 ) ) | ||
| Assertion | uzind4 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝜏 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzind4.1 | ⊢ ( 𝑗 = 𝑀 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | uzind4.2 | ⊢ ( 𝑗 = 𝑘 → ( 𝜑 ↔ 𝜒 ) ) | |
| 3 | uzind4.3 | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( 𝜑 ↔ 𝜃 ) ) | |
| 4 | uzind4.4 | ⊢ ( 𝑗 = 𝑁 → ( 𝜑 ↔ 𝜏 ) ) | |
| 5 | uzind4.5 | ⊢ ( 𝑀 ∈ ℤ → 𝜓 ) | |
| 6 | uzind4.6 | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝜒 → 𝜃 ) ) | |
| 7 | eluzel2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) | |
| 8 | breq2 | ⊢ ( 𝑚 = 𝑁 → ( 𝑀 ≤ 𝑚 ↔ 𝑀 ≤ 𝑁 ) ) | |
| 9 | eluzelz | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℤ ) | |
| 10 | eluzle | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ≤ 𝑁 ) | |
| 11 | 8 9 10 | elrabd | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ { 𝑚 ∈ ℤ ∣ 𝑀 ≤ 𝑚 } ) |
| 12 | breq2 | ⊢ ( 𝑚 = 𝑘 → ( 𝑀 ≤ 𝑚 ↔ 𝑀 ≤ 𝑘 ) ) | |
| 13 | 12 | elrab | ⊢ ( 𝑘 ∈ { 𝑚 ∈ ℤ ∣ 𝑀 ≤ 𝑚 } ↔ ( 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘 ) ) |
| 14 | eluz2 | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↔ ( 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘 ) ) | |
| 15 | 14 | biimpri | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 16 | 15 | 3expb | ⊢ ( ( 𝑀 ∈ ℤ ∧ ( 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 17 | 13 16 | sylan2b | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑘 ∈ { 𝑚 ∈ ℤ ∣ 𝑀 ≤ 𝑚 } ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 18 | 17 6 | syl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑘 ∈ { 𝑚 ∈ ℤ ∣ 𝑀 ≤ 𝑚 } ) → ( 𝜒 → 𝜃 ) ) |
| 19 | 1 2 3 4 5 18 | uzind3 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ { 𝑚 ∈ ℤ ∣ 𝑀 ≤ 𝑚 } ) → 𝜏 ) |
| 20 | 7 11 19 | syl2anc | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝜏 ) |