This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rule used to change bound variables, using implicit substitution. Version of cbval2vv with more disjoint variable conditions, which requires fewer axioms . (Contributed by NM, 4-Feb-2005) Avoid ax-13 . (Revised by GG, 10-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cbval2vw.1 | ⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → ( 𝜑 ↔ 𝜓 ) ) | |
| Assertion | cbval2vw | ⊢ ( ∀ 𝑥 ∀ 𝑦 𝜑 ↔ ∀ 𝑧 ∀ 𝑤 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbval2vw.1 | ⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | 1 | cbvaldvaw | ⊢ ( 𝑥 = 𝑧 → ( ∀ 𝑦 𝜑 ↔ ∀ 𝑤 𝜓 ) ) |
| 3 | 2 | cbvalvw | ⊢ ( ∀ 𝑥 ∀ 𝑦 𝜑 ↔ ∀ 𝑧 ∀ 𝑤 𝜓 ) |