This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The infinite sum of a converging infinite series equals the first term plus the infinite sum of the rest of it. (Contributed by NM, 2-Jan-2006) (Revised by Mario Carneiro, 24-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isum1p.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| isum1p.3 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| isum1p.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) | ||
| isum1p.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℂ ) | ||
| isum1p.6 | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) | ||
| Assertion | isum1p | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑍 𝐴 = ( ( 𝐹 ‘ 𝑀 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isum1p.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | isum1p.3 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | isum1p.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) | |
| 4 | isum1p.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℂ ) | |
| 5 | isum1p.6 | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) | |
| 6 | eqid | ⊢ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) = ( ℤ≥ ‘ ( 𝑀 + 1 ) ) | |
| 7 | uzid | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 8 | 2 7 | syl | ⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 9 | peano2uz | ⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑀 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 10 | 8 9 | syl | ⊢ ( 𝜑 → ( 𝑀 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 11 | 10 1 | eleqtrrdi | ⊢ ( 𝜑 → ( 𝑀 + 1 ) ∈ 𝑍 ) |
| 12 | 1 6 11 3 4 5 | isumsplit | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑍 𝐴 = ( Σ 𝑘 ∈ ( 𝑀 ... ( ( 𝑀 + 1 ) − 1 ) ) 𝐴 + Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) 𝐴 ) ) |
| 13 | 2 | zcnd | ⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
| 14 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 15 | pncan | ⊢ ( ( 𝑀 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑀 + 1 ) − 1 ) = 𝑀 ) | |
| 16 | 13 14 15 | sylancl | ⊢ ( 𝜑 → ( ( 𝑀 + 1 ) − 1 ) = 𝑀 ) |
| 17 | 16 | oveq2d | ⊢ ( 𝜑 → ( 𝑀 ... ( ( 𝑀 + 1 ) − 1 ) ) = ( 𝑀 ... 𝑀 ) ) |
| 18 | 17 | sumeq1d | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ... ( ( 𝑀 + 1 ) − 1 ) ) 𝐴 = Σ 𝑘 ∈ ( 𝑀 ... 𝑀 ) 𝐴 ) |
| 19 | elfzuz | ⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑀 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 20 | 19 1 | eleqtrrdi | ⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑀 ) → 𝑘 ∈ 𝑍 ) |
| 21 | 20 3 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑀 ) ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) |
| 22 | 21 | sumeq2dv | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ... 𝑀 ) ( 𝐹 ‘ 𝑘 ) = Σ 𝑘 ∈ ( 𝑀 ... 𝑀 ) 𝐴 ) |
| 23 | fveq2 | ⊢ ( 𝑘 = 𝑀 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑀 ) ) | |
| 24 | 23 | eleq1d | ⊢ ( 𝑘 = 𝑀 → ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ↔ ( 𝐹 ‘ 𝑀 ) ∈ ℂ ) ) |
| 25 | 3 4 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 26 | 25 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 27 | 8 1 | eleqtrrdi | ⊢ ( 𝜑 → 𝑀 ∈ 𝑍 ) |
| 28 | 24 26 27 | rspcdva | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑀 ) ∈ ℂ ) |
| 29 | 23 | fsum1 | ⊢ ( ( 𝑀 ∈ ℤ ∧ ( 𝐹 ‘ 𝑀 ) ∈ ℂ ) → Σ 𝑘 ∈ ( 𝑀 ... 𝑀 ) ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑀 ) ) |
| 30 | 2 28 29 | syl2anc | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ... 𝑀 ) ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑀 ) ) |
| 31 | 18 22 30 | 3eqtr2d | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ... ( ( 𝑀 + 1 ) − 1 ) ) 𝐴 = ( 𝐹 ‘ 𝑀 ) ) |
| 32 | 31 | oveq1d | ⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( 𝑀 ... ( ( 𝑀 + 1 ) − 1 ) ) 𝐴 + Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) 𝐴 ) = ( ( 𝐹 ‘ 𝑀 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) 𝐴 ) ) |
| 33 | 12 32 | eqtrd | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑍 𝐴 = ( ( 𝐹 ‘ 𝑀 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) 𝐴 ) ) |