This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for rpnnen2 . (Contributed by Mario Carneiro, 13-May-2013) (Revised by Mario Carneiro, 30-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rpnnen2.1 | |- F = ( x e. ~P NN |-> ( n e. NN |-> if ( n e. x , ( ( 1 / 3 ) ^ n ) , 0 ) ) ) |
|
| Assertion | rpnnen2lem9 | |- ( M e. NN -> sum_ k e. ( ZZ>= ` M ) ( ( F ` ( NN \ { M } ) ) ` k ) = ( 0 + ( ( ( 1 / 3 ) ^ ( M + 1 ) ) / ( 1 - ( 1 / 3 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpnnen2.1 | |- F = ( x e. ~P NN |-> ( n e. NN |-> if ( n e. x , ( ( 1 / 3 ) ^ n ) , 0 ) ) ) |
|
| 2 | eqid | |- ( ZZ>= ` M ) = ( ZZ>= ` M ) |
|
| 3 | nnz | |- ( M e. NN -> M e. ZZ ) |
|
| 4 | eqidd | |- ( ( M e. NN /\ k e. ( ZZ>= ` M ) ) -> ( ( F ` ( NN \ { M } ) ) ` k ) = ( ( F ` ( NN \ { M } ) ) ` k ) ) |
|
| 5 | eluznn | |- ( ( M e. NN /\ k e. ( ZZ>= ` M ) ) -> k e. NN ) |
|
| 6 | difss | |- ( NN \ { M } ) C_ NN |
|
| 7 | 1 | rpnnen2lem2 | |- ( ( NN \ { M } ) C_ NN -> ( F ` ( NN \ { M } ) ) : NN --> RR ) |
| 8 | 6 7 | ax-mp | |- ( F ` ( NN \ { M } ) ) : NN --> RR |
| 9 | 8 | ffvelcdmi | |- ( k e. NN -> ( ( F ` ( NN \ { M } ) ) ` k ) e. RR ) |
| 10 | 9 | recnd | |- ( k e. NN -> ( ( F ` ( NN \ { M } ) ) ` k ) e. CC ) |
| 11 | 5 10 | syl | |- ( ( M e. NN /\ k e. ( ZZ>= ` M ) ) -> ( ( F ` ( NN \ { M } ) ) ` k ) e. CC ) |
| 12 | 1 | rpnnen2lem5 | |- ( ( ( NN \ { M } ) C_ NN /\ M e. NN ) -> seq M ( + , ( F ` ( NN \ { M } ) ) ) e. dom ~~> ) |
| 13 | 6 12 | mpan | |- ( M e. NN -> seq M ( + , ( F ` ( NN \ { M } ) ) ) e. dom ~~> ) |
| 14 | 2 3 4 11 13 | isum1p | |- ( M e. NN -> sum_ k e. ( ZZ>= ` M ) ( ( F ` ( NN \ { M } ) ) ` k ) = ( ( ( F ` ( NN \ { M } ) ) ` M ) + sum_ k e. ( ZZ>= ` ( M + 1 ) ) ( ( F ` ( NN \ { M } ) ) ` k ) ) ) |
| 15 | 1 | rpnnen2lem1 | |- ( ( ( NN \ { M } ) C_ NN /\ M e. NN ) -> ( ( F ` ( NN \ { M } ) ) ` M ) = if ( M e. ( NN \ { M } ) , ( ( 1 / 3 ) ^ M ) , 0 ) ) |
| 16 | 6 15 | mpan | |- ( M e. NN -> ( ( F ` ( NN \ { M } ) ) ` M ) = if ( M e. ( NN \ { M } ) , ( ( 1 / 3 ) ^ M ) , 0 ) ) |
| 17 | neldifsnd | |- ( M e. NN -> -. M e. ( NN \ { M } ) ) |
|
| 18 | 17 | iffalsed | |- ( M e. NN -> if ( M e. ( NN \ { M } ) , ( ( 1 / 3 ) ^ M ) , 0 ) = 0 ) |
| 19 | 16 18 | eqtrd | |- ( M e. NN -> ( ( F ` ( NN \ { M } ) ) ` M ) = 0 ) |
| 20 | eqid | |- ( ZZ>= ` ( M + 1 ) ) = ( ZZ>= ` ( M + 1 ) ) |
|
| 21 | peano2nn | |- ( M e. NN -> ( M + 1 ) e. NN ) |
|
| 22 | 21 | nnzd | |- ( M e. NN -> ( M + 1 ) e. ZZ ) |
| 23 | eqidd | |- ( ( M e. NN /\ k e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( F ` ( NN \ { M } ) ) ` k ) = ( ( F ` ( NN \ { M } ) ) ` k ) ) |
|
| 24 | eluznn | |- ( ( ( M + 1 ) e. NN /\ k e. ( ZZ>= ` ( M + 1 ) ) ) -> k e. NN ) |
|
| 25 | 21 24 | sylan | |- ( ( M e. NN /\ k e. ( ZZ>= ` ( M + 1 ) ) ) -> k e. NN ) |
| 26 | 25 10 | syl | |- ( ( M e. NN /\ k e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( F ` ( NN \ { M } ) ) ` k ) e. CC ) |
| 27 | 1re | |- 1 e. RR |
|
| 28 | 3nn | |- 3 e. NN |
|
| 29 | nndivre | |- ( ( 1 e. RR /\ 3 e. NN ) -> ( 1 / 3 ) e. RR ) |
|
| 30 | 27 28 29 | mp2an | |- ( 1 / 3 ) e. RR |
| 31 | 30 | recni | |- ( 1 / 3 ) e. CC |
| 32 | 31 | a1i | |- ( M e. NN -> ( 1 / 3 ) e. CC ) |
| 33 | 0re | |- 0 e. RR |
|
| 34 | 3re | |- 3 e. RR |
|
| 35 | 3pos | |- 0 < 3 |
|
| 36 | 34 35 | recgt0ii | |- 0 < ( 1 / 3 ) |
| 37 | 33 30 36 | ltleii | |- 0 <_ ( 1 / 3 ) |
| 38 | absid | |- ( ( ( 1 / 3 ) e. RR /\ 0 <_ ( 1 / 3 ) ) -> ( abs ` ( 1 / 3 ) ) = ( 1 / 3 ) ) |
|
| 39 | 30 37 38 | mp2an | |- ( abs ` ( 1 / 3 ) ) = ( 1 / 3 ) |
| 40 | 1lt3 | |- 1 < 3 |
|
| 41 | recgt1 | |- ( ( 3 e. RR /\ 0 < 3 ) -> ( 1 < 3 <-> ( 1 / 3 ) < 1 ) ) |
|
| 42 | 34 35 41 | mp2an | |- ( 1 < 3 <-> ( 1 / 3 ) < 1 ) |
| 43 | 40 42 | mpbi | |- ( 1 / 3 ) < 1 |
| 44 | 39 43 | eqbrtri | |- ( abs ` ( 1 / 3 ) ) < 1 |
| 45 | 44 | a1i | |- ( M e. NN -> ( abs ` ( 1 / 3 ) ) < 1 ) |
| 46 | 21 | nnnn0d | |- ( M e. NN -> ( M + 1 ) e. NN0 ) |
| 47 | 1 | rpnnen2lem1 | |- ( ( ( NN \ { M } ) C_ NN /\ k e. NN ) -> ( ( F ` ( NN \ { M } ) ) ` k ) = if ( k e. ( NN \ { M } ) , ( ( 1 / 3 ) ^ k ) , 0 ) ) |
| 48 | 6 47 | mpan | |- ( k e. NN -> ( ( F ` ( NN \ { M } ) ) ` k ) = if ( k e. ( NN \ { M } ) , ( ( 1 / 3 ) ^ k ) , 0 ) ) |
| 49 | 25 48 | syl | |- ( ( M e. NN /\ k e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( F ` ( NN \ { M } ) ) ` k ) = if ( k e. ( NN \ { M } ) , ( ( 1 / 3 ) ^ k ) , 0 ) ) |
| 50 | nnre | |- ( M e. NN -> M e. RR ) |
|
| 51 | 50 | adantr | |- ( ( M e. NN /\ k e. ( ZZ>= ` ( M + 1 ) ) ) -> M e. RR ) |
| 52 | eluzle | |- ( k e. ( ZZ>= ` ( M + 1 ) ) -> ( M + 1 ) <_ k ) |
|
| 53 | 52 | adantl | |- ( ( M e. NN /\ k e. ( ZZ>= ` ( M + 1 ) ) ) -> ( M + 1 ) <_ k ) |
| 54 | nnltp1le | |- ( ( M e. NN /\ k e. NN ) -> ( M < k <-> ( M + 1 ) <_ k ) ) |
|
| 55 | 25 54 | syldan | |- ( ( M e. NN /\ k e. ( ZZ>= ` ( M + 1 ) ) ) -> ( M < k <-> ( M + 1 ) <_ k ) ) |
| 56 | 53 55 | mpbird | |- ( ( M e. NN /\ k e. ( ZZ>= ` ( M + 1 ) ) ) -> M < k ) |
| 57 | 51 56 | gtned | |- ( ( M e. NN /\ k e. ( ZZ>= ` ( M + 1 ) ) ) -> k =/= M ) |
| 58 | eldifsn | |- ( k e. ( NN \ { M } ) <-> ( k e. NN /\ k =/= M ) ) |
|
| 59 | 25 57 58 | sylanbrc | |- ( ( M e. NN /\ k e. ( ZZ>= ` ( M + 1 ) ) ) -> k e. ( NN \ { M } ) ) |
| 60 | 59 | iftrued | |- ( ( M e. NN /\ k e. ( ZZ>= ` ( M + 1 ) ) ) -> if ( k e. ( NN \ { M } ) , ( ( 1 / 3 ) ^ k ) , 0 ) = ( ( 1 / 3 ) ^ k ) ) |
| 61 | 49 60 | eqtrd | |- ( ( M e. NN /\ k e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( F ` ( NN \ { M } ) ) ` k ) = ( ( 1 / 3 ) ^ k ) ) |
| 62 | 32 45 46 61 | geolim2 | |- ( M e. NN -> seq ( M + 1 ) ( + , ( F ` ( NN \ { M } ) ) ) ~~> ( ( ( 1 / 3 ) ^ ( M + 1 ) ) / ( 1 - ( 1 / 3 ) ) ) ) |
| 63 | 20 22 23 26 62 | isumclim | |- ( M e. NN -> sum_ k e. ( ZZ>= ` ( M + 1 ) ) ( ( F ` ( NN \ { M } ) ) ` k ) = ( ( ( 1 / 3 ) ^ ( M + 1 ) ) / ( 1 - ( 1 / 3 ) ) ) ) |
| 64 | 19 63 | oveq12d | |- ( M e. NN -> ( ( ( F ` ( NN \ { M } ) ) ` M ) + sum_ k e. ( ZZ>= ` ( M + 1 ) ) ( ( F ` ( NN \ { M } ) ) ` k ) ) = ( 0 + ( ( ( 1 / 3 ) ^ ( M + 1 ) ) / ( 1 - ( 1 / 3 ) ) ) ) ) |
| 65 | 14 64 | eqtrd | |- ( M e. NN -> sum_ k e. ( ZZ>= ` M ) ( ( F ` ( NN \ { M } ) ) ` k ) = ( 0 + ( ( ( 1 / 3 ) ^ ( M + 1 ) ) / ( 1 - ( 1 / 3 ) ) ) ) ) |