This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The reciprocal of a positive number is positive. Exercise 4 of Apostol p. 21. (Contributed by NM, 15-May-1999)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ltplus1.1 | ⊢ 𝐴 ∈ ℝ | |
| recgt0i.2 | ⊢ 0 < 𝐴 | ||
| Assertion | recgt0ii | ⊢ 0 < ( 1 / 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltplus1.1 | ⊢ 𝐴 ∈ ℝ | |
| 2 | recgt0i.2 | ⊢ 0 < 𝐴 | |
| 3 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 4 | 1 | recni | ⊢ 𝐴 ∈ ℂ |
| 5 | ax-1ne0 | ⊢ 1 ≠ 0 | |
| 6 | 1 2 | gt0ne0ii | ⊢ 𝐴 ≠ 0 |
| 7 | 3 4 5 6 | divne0i | ⊢ ( 1 / 𝐴 ) ≠ 0 |
| 8 | 7 | nesymi | ⊢ ¬ 0 = ( 1 / 𝐴 ) |
| 9 | 0lt1 | ⊢ 0 < 1 | |
| 10 | 0re | ⊢ 0 ∈ ℝ | |
| 11 | 1re | ⊢ 1 ∈ ℝ | |
| 12 | 10 11 | ltnsymi | ⊢ ( 0 < 1 → ¬ 1 < 0 ) |
| 13 | 9 12 | ax-mp | ⊢ ¬ 1 < 0 |
| 14 | 1 6 | rereccli | ⊢ ( 1 / 𝐴 ) ∈ ℝ |
| 15 | 14 | renegcli | ⊢ - ( 1 / 𝐴 ) ∈ ℝ |
| 16 | 15 1 | mulgt0i | ⊢ ( ( 0 < - ( 1 / 𝐴 ) ∧ 0 < 𝐴 ) → 0 < ( - ( 1 / 𝐴 ) · 𝐴 ) ) |
| 17 | 2 16 | mpan2 | ⊢ ( 0 < - ( 1 / 𝐴 ) → 0 < ( - ( 1 / 𝐴 ) · 𝐴 ) ) |
| 18 | 14 | recni | ⊢ ( 1 / 𝐴 ) ∈ ℂ |
| 19 | 18 4 | mulneg1i | ⊢ ( - ( 1 / 𝐴 ) · 𝐴 ) = - ( ( 1 / 𝐴 ) · 𝐴 ) |
| 20 | 4 6 | recidi | ⊢ ( 𝐴 · ( 1 / 𝐴 ) ) = 1 |
| 21 | 4 18 20 | mulcomli | ⊢ ( ( 1 / 𝐴 ) · 𝐴 ) = 1 |
| 22 | 21 | negeqi | ⊢ - ( ( 1 / 𝐴 ) · 𝐴 ) = - 1 |
| 23 | 19 22 | eqtri | ⊢ ( - ( 1 / 𝐴 ) · 𝐴 ) = - 1 |
| 24 | 17 23 | breqtrdi | ⊢ ( 0 < - ( 1 / 𝐴 ) → 0 < - 1 ) |
| 25 | lt0neg1 | ⊢ ( ( 1 / 𝐴 ) ∈ ℝ → ( ( 1 / 𝐴 ) < 0 ↔ 0 < - ( 1 / 𝐴 ) ) ) | |
| 26 | 14 25 | ax-mp | ⊢ ( ( 1 / 𝐴 ) < 0 ↔ 0 < - ( 1 / 𝐴 ) ) |
| 27 | lt0neg1 | ⊢ ( 1 ∈ ℝ → ( 1 < 0 ↔ 0 < - 1 ) ) | |
| 28 | 11 27 | ax-mp | ⊢ ( 1 < 0 ↔ 0 < - 1 ) |
| 29 | 24 26 28 | 3imtr4i | ⊢ ( ( 1 / 𝐴 ) < 0 → 1 < 0 ) |
| 30 | 13 29 | mto | ⊢ ¬ ( 1 / 𝐴 ) < 0 |
| 31 | 8 30 | pm3.2ni | ⊢ ¬ ( 0 = ( 1 / 𝐴 ) ∨ ( 1 / 𝐴 ) < 0 ) |
| 32 | axlttri | ⊢ ( ( 0 ∈ ℝ ∧ ( 1 / 𝐴 ) ∈ ℝ ) → ( 0 < ( 1 / 𝐴 ) ↔ ¬ ( 0 = ( 1 / 𝐴 ) ∨ ( 1 / 𝐴 ) < 0 ) ) ) | |
| 33 | 10 14 32 | mp2an | ⊢ ( 0 < ( 1 / 𝐴 ) ↔ ¬ ( 0 = ( 1 / 𝐴 ) ∨ ( 1 / 𝐴 ) < 0 ) ) |
| 34 | 31 33 | mpbir | ⊢ 0 < ( 1 / 𝐴 ) |