This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A class is equal to the empty set if and only if it has no elements. Theorem 2 of Suppes p. 22. (Contributed by NM, 29-Aug-1993) Avoid ax-11 , ax-12 . (Revised by GG and Steven Nguyen, 28-Jun-2024) Avoid ax-8 , df-clel . (Revised by GG, 6-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eq0 | ⊢ ( 𝐴 = ∅ ↔ ∀ 𝑥 ¬ 𝑥 ∈ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biidd | ⊢ ( 𝑦 = 𝑥 → ( ⊥ ↔ ⊥ ) ) | |
| 2 | 1 | eqabbw | ⊢ ( 𝐴 = { 𝑦 ∣ ⊥ } ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ ⊥ ) ) |
| 3 | dfnul4 | ⊢ ∅ = { 𝑦 ∣ ⊥ } | |
| 4 | 3 | eqeq2i | ⊢ ( 𝐴 = ∅ ↔ 𝐴 = { 𝑦 ∣ ⊥ } ) |
| 5 | nbfal | ⊢ ( ¬ 𝑥 ∈ 𝐴 ↔ ( 𝑥 ∈ 𝐴 ↔ ⊥ ) ) | |
| 6 | 5 | albii | ⊢ ( ∀ 𝑥 ¬ 𝑥 ∈ 𝐴 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ ⊥ ) ) |
| 7 | 2 4 6 | 3bitr4i | ⊢ ( 𝐴 = ∅ ↔ ∀ 𝑥 ¬ 𝑥 ∈ 𝐴 ) |