This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for rnelfm . (Contributed by Jeff Hankins, 14-Nov-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rnelfmlem | |- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ran ( x e. L |-> ( `' F " x ) ) e. ( fBas ` Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 | |- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> Y e. A ) |
|
| 2 | cnvimass | |- ( `' F " x ) C_ dom F |
|
| 3 | simpl3 | |- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> F : Y --> X ) |
|
| 4 | 2 3 | fssdm | |- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ( `' F " x ) C_ Y ) |
| 5 | 1 4 | sselpwd | |- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ( `' F " x ) e. ~P Y ) |
| 6 | 5 | adantr | |- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) -> ( `' F " x ) e. ~P Y ) |
| 7 | 6 | fmpttd | |- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ( x e. L |-> ( `' F " x ) ) : L --> ~P Y ) |
| 8 | 7 | frnd | |- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ran ( x e. L |-> ( `' F " x ) ) C_ ~P Y ) |
| 9 | filtop | |- ( L e. ( Fil ` X ) -> X e. L ) |
|
| 10 | 9 | 3ad2ant2 | |- ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) -> X e. L ) |
| 11 | 10 | adantr | |- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> X e. L ) |
| 12 | fimacnv | |- ( F : Y --> X -> ( `' F " X ) = Y ) |
|
| 13 | 12 | eqcomd | |- ( F : Y --> X -> Y = ( `' F " X ) ) |
| 14 | 13 | 3ad2ant3 | |- ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) -> Y = ( `' F " X ) ) |
| 15 | 14 | adantr | |- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> Y = ( `' F " X ) ) |
| 16 | imaeq2 | |- ( x = X -> ( `' F " x ) = ( `' F " X ) ) |
|
| 17 | 16 | rspceeqv | |- ( ( X e. L /\ Y = ( `' F " X ) ) -> E. x e. L Y = ( `' F " x ) ) |
| 18 | 11 15 17 | syl2anc | |- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> E. x e. L Y = ( `' F " x ) ) |
| 19 | eqid | |- ( x e. L |-> ( `' F " x ) ) = ( x e. L |-> ( `' F " x ) ) |
|
| 20 | 19 | elrnmpt | |- ( Y e. A -> ( Y e. ran ( x e. L |-> ( `' F " x ) ) <-> E. x e. L Y = ( `' F " x ) ) ) |
| 21 | 20 | 3ad2ant1 | |- ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) -> ( Y e. ran ( x e. L |-> ( `' F " x ) ) <-> E. x e. L Y = ( `' F " x ) ) ) |
| 22 | 21 | adantr | |- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ( Y e. ran ( x e. L |-> ( `' F " x ) ) <-> E. x e. L Y = ( `' F " x ) ) ) |
| 23 | 18 22 | mpbird | |- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> Y e. ran ( x e. L |-> ( `' F " x ) ) ) |
| 24 | 23 | ne0d | |- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ran ( x e. L |-> ( `' F " x ) ) =/= (/) ) |
| 25 | 0nelfil | |- ( L e. ( Fil ` X ) -> -. (/) e. L ) |
|
| 26 | 25 | 3ad2ant2 | |- ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) -> -. (/) e. L ) |
| 27 | 26 | adantr | |- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> -. (/) e. L ) |
| 28 | 0ex | |- (/) e. _V |
|
| 29 | 19 | elrnmpt | |- ( (/) e. _V -> ( (/) e. ran ( x e. L |-> ( `' F " x ) ) <-> E. x e. L (/) = ( `' F " x ) ) ) |
| 30 | 28 29 | ax-mp | |- ( (/) e. ran ( x e. L |-> ( `' F " x ) ) <-> E. x e. L (/) = ( `' F " x ) ) |
| 31 | ffn | |- ( F : Y --> X -> F Fn Y ) |
|
| 32 | fvelrnb | |- ( F Fn Y -> ( y e. ran F <-> E. z e. Y ( F ` z ) = y ) ) |
|
| 33 | 31 32 | syl | |- ( F : Y --> X -> ( y e. ran F <-> E. z e. Y ( F ` z ) = y ) ) |
| 34 | 33 | 3ad2ant3 | |- ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) -> ( y e. ran F <-> E. z e. Y ( F ` z ) = y ) ) |
| 35 | 34 | ad2antrr | |- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( x e. L /\ y e. x ) ) -> ( y e. ran F <-> E. z e. Y ( F ` z ) = y ) ) |
| 36 | eleq1 | |- ( ( F ` z ) = y -> ( ( F ` z ) e. x <-> y e. x ) ) |
|
| 37 | 36 | biimparc | |- ( ( y e. x /\ ( F ` z ) = y ) -> ( F ` z ) e. x ) |
| 38 | 37 | ad2ant2l | |- ( ( ( x e. L /\ y e. x ) /\ ( z e. Y /\ ( F ` z ) = y ) ) -> ( F ` z ) e. x ) |
| 39 | 38 | adantll | |- ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( x e. L /\ y e. x ) ) /\ ( z e. Y /\ ( F ` z ) = y ) ) -> ( F ` z ) e. x ) |
| 40 | ffun | |- ( F : Y --> X -> Fun F ) |
|
| 41 | 40 | 3ad2ant3 | |- ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) -> Fun F ) |
| 42 | 41 | ad3antrrr | |- ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( x e. L /\ y e. x ) ) /\ ( z e. Y /\ ( F ` z ) = y ) ) -> Fun F ) |
| 43 | fdm | |- ( F : Y --> X -> dom F = Y ) |
|
| 44 | 43 | eleq2d | |- ( F : Y --> X -> ( z e. dom F <-> z e. Y ) ) |
| 45 | 44 | biimpar | |- ( ( F : Y --> X /\ z e. Y ) -> z e. dom F ) |
| 46 | 45 | 3ad2antl3 | |- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ z e. Y ) -> z e. dom F ) |
| 47 | 46 | adantlr | |- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ z e. Y ) -> z e. dom F ) |
| 48 | 47 | ad2ant2r | |- ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( x e. L /\ y e. x ) ) /\ ( z e. Y /\ ( F ` z ) = y ) ) -> z e. dom F ) |
| 49 | fvimacnv | |- ( ( Fun F /\ z e. dom F ) -> ( ( F ` z ) e. x <-> z e. ( `' F " x ) ) ) |
|
| 50 | 42 48 49 | syl2anc | |- ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( x e. L /\ y e. x ) ) /\ ( z e. Y /\ ( F ` z ) = y ) ) -> ( ( F ` z ) e. x <-> z e. ( `' F " x ) ) ) |
| 51 | 39 50 | mpbid | |- ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( x e. L /\ y e. x ) ) /\ ( z e. Y /\ ( F ` z ) = y ) ) -> z e. ( `' F " x ) ) |
| 52 | n0i | |- ( z e. ( `' F " x ) -> -. ( `' F " x ) = (/) ) |
|
| 53 | eqcom | |- ( ( `' F " x ) = (/) <-> (/) = ( `' F " x ) ) |
|
| 54 | 52 53 | sylnib | |- ( z e. ( `' F " x ) -> -. (/) = ( `' F " x ) ) |
| 55 | 51 54 | syl | |- ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( x e. L /\ y e. x ) ) /\ ( z e. Y /\ ( F ` z ) = y ) ) -> -. (/) = ( `' F " x ) ) |
| 56 | 55 | rexlimdvaa | |- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( x e. L /\ y e. x ) ) -> ( E. z e. Y ( F ` z ) = y -> -. (/) = ( `' F " x ) ) ) |
| 57 | 35 56 | sylbid | |- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( x e. L /\ y e. x ) ) -> ( y e. ran F -> -. (/) = ( `' F " x ) ) ) |
| 58 | 57 | con2d | |- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( x e. L /\ y e. x ) ) -> ( (/) = ( `' F " x ) -> -. y e. ran F ) ) |
| 59 | 58 | expr | |- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) -> ( y e. x -> ( (/) = ( `' F " x ) -> -. y e. ran F ) ) ) |
| 60 | 59 | com23 | |- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) -> ( (/) = ( `' F " x ) -> ( y e. x -> -. y e. ran F ) ) ) |
| 61 | 60 | impr | |- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( x e. L /\ (/) = ( `' F " x ) ) ) -> ( y e. x -> -. y e. ran F ) ) |
| 62 | 61 | alrimiv | |- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( x e. L /\ (/) = ( `' F " x ) ) ) -> A. y ( y e. x -> -. y e. ran F ) ) |
| 63 | imnan | |- ( ( y e. x -> -. y e. ran F ) <-> -. ( y e. x /\ y e. ran F ) ) |
|
| 64 | elin | |- ( y e. ( x i^i ran F ) <-> ( y e. x /\ y e. ran F ) ) |
|
| 65 | 63 64 | xchbinxr | |- ( ( y e. x -> -. y e. ran F ) <-> -. y e. ( x i^i ran F ) ) |
| 66 | 65 | albii | |- ( A. y ( y e. x -> -. y e. ran F ) <-> A. y -. y e. ( x i^i ran F ) ) |
| 67 | eq0 | |- ( ( x i^i ran F ) = (/) <-> A. y -. y e. ( x i^i ran F ) ) |
|
| 68 | eqcom | |- ( ( x i^i ran F ) = (/) <-> (/) = ( x i^i ran F ) ) |
|
| 69 | 66 67 68 | 3bitr2i | |- ( A. y ( y e. x -> -. y e. ran F ) <-> (/) = ( x i^i ran F ) ) |
| 70 | 62 69 | sylib | |- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( x e. L /\ (/) = ( `' F " x ) ) ) -> (/) = ( x i^i ran F ) ) |
| 71 | simpll2 | |- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( x e. L /\ (/) = ( `' F " x ) ) ) -> L e. ( Fil ` X ) ) |
|
| 72 | simprl | |- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( x e. L /\ (/) = ( `' F " x ) ) ) -> x e. L ) |
|
| 73 | simplr | |- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( x e. L /\ (/) = ( `' F " x ) ) ) -> ran F e. L ) |
|
| 74 | filin | |- ( ( L e. ( Fil ` X ) /\ x e. L /\ ran F e. L ) -> ( x i^i ran F ) e. L ) |
|
| 75 | 71 72 73 74 | syl3anc | |- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( x e. L /\ (/) = ( `' F " x ) ) ) -> ( x i^i ran F ) e. L ) |
| 76 | 70 75 | eqeltrd | |- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( x e. L /\ (/) = ( `' F " x ) ) ) -> (/) e. L ) |
| 77 | 76 | rexlimdvaa | |- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ( E. x e. L (/) = ( `' F " x ) -> (/) e. L ) ) |
| 78 | 30 77 | biimtrid | |- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ( (/) e. ran ( x e. L |-> ( `' F " x ) ) -> (/) e. L ) ) |
| 79 | 27 78 | mtod | |- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> -. (/) e. ran ( x e. L |-> ( `' F " x ) ) ) |
| 80 | df-nel | |- ( (/) e/ ran ( x e. L |-> ( `' F " x ) ) <-> -. (/) e. ran ( x e. L |-> ( `' F " x ) ) ) |
|
| 81 | 79 80 | sylibr | |- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> (/) e/ ran ( x e. L |-> ( `' F " x ) ) ) |
| 82 | 19 | elrnmpt | |- ( r e. _V -> ( r e. ran ( x e. L |-> ( `' F " x ) ) <-> E. x e. L r = ( `' F " x ) ) ) |
| 83 | 82 | elv | |- ( r e. ran ( x e. L |-> ( `' F " x ) ) <-> E. x e. L r = ( `' F " x ) ) |
| 84 | imaeq2 | |- ( x = u -> ( `' F " x ) = ( `' F " u ) ) |
|
| 85 | 84 | eqeq2d | |- ( x = u -> ( r = ( `' F " x ) <-> r = ( `' F " u ) ) ) |
| 86 | 85 | cbvrexvw | |- ( E. x e. L r = ( `' F " x ) <-> E. u e. L r = ( `' F " u ) ) |
| 87 | 83 86 | bitri | |- ( r e. ran ( x e. L |-> ( `' F " x ) ) <-> E. u e. L r = ( `' F " u ) ) |
| 88 | 19 | elrnmpt | |- ( s e. _V -> ( s e. ran ( x e. L |-> ( `' F " x ) ) <-> E. x e. L s = ( `' F " x ) ) ) |
| 89 | 88 | elv | |- ( s e. ran ( x e. L |-> ( `' F " x ) ) <-> E. x e. L s = ( `' F " x ) ) |
| 90 | imaeq2 | |- ( x = v -> ( `' F " x ) = ( `' F " v ) ) |
|
| 91 | 90 | eqeq2d | |- ( x = v -> ( s = ( `' F " x ) <-> s = ( `' F " v ) ) ) |
| 92 | 91 | cbvrexvw | |- ( E. x e. L s = ( `' F " x ) <-> E. v e. L s = ( `' F " v ) ) |
| 93 | 89 92 | bitri | |- ( s e. ran ( x e. L |-> ( `' F " x ) ) <-> E. v e. L s = ( `' F " v ) ) |
| 94 | 87 93 | anbi12i | |- ( ( r e. ran ( x e. L |-> ( `' F " x ) ) /\ s e. ran ( x e. L |-> ( `' F " x ) ) ) <-> ( E. u e. L r = ( `' F " u ) /\ E. v e. L s = ( `' F " v ) ) ) |
| 95 | reeanv | |- ( E. u e. L E. v e. L ( r = ( `' F " u ) /\ s = ( `' F " v ) ) <-> ( E. u e. L r = ( `' F " u ) /\ E. v e. L s = ( `' F " v ) ) ) |
|
| 96 | 94 95 | bitr4i | |- ( ( r e. ran ( x e. L |-> ( `' F " x ) ) /\ s e. ran ( x e. L |-> ( `' F " x ) ) ) <-> E. u e. L E. v e. L ( r = ( `' F " u ) /\ s = ( `' F " v ) ) ) |
| 97 | filin | |- ( ( L e. ( Fil ` X ) /\ u e. L /\ v e. L ) -> ( u i^i v ) e. L ) |
|
| 98 | 97 | 3expb | |- ( ( L e. ( Fil ` X ) /\ ( u e. L /\ v e. L ) ) -> ( u i^i v ) e. L ) |
| 99 | 98 | adantlr | |- ( ( ( L e. ( Fil ` X ) /\ F : Y --> X ) /\ ( u e. L /\ v e. L ) ) -> ( u i^i v ) e. L ) |
| 100 | eqidd | |- ( ( ( L e. ( Fil ` X ) /\ F : Y --> X ) /\ ( u e. L /\ v e. L ) ) -> ( `' F " ( u i^i v ) ) = ( `' F " ( u i^i v ) ) ) |
|
| 101 | imaeq2 | |- ( x = ( u i^i v ) -> ( `' F " x ) = ( `' F " ( u i^i v ) ) ) |
|
| 102 | 101 | rspceeqv | |- ( ( ( u i^i v ) e. L /\ ( `' F " ( u i^i v ) ) = ( `' F " ( u i^i v ) ) ) -> E. x e. L ( `' F " ( u i^i v ) ) = ( `' F " x ) ) |
| 103 | 99 100 102 | syl2anc | |- ( ( ( L e. ( Fil ` X ) /\ F : Y --> X ) /\ ( u e. L /\ v e. L ) ) -> E. x e. L ( `' F " ( u i^i v ) ) = ( `' F " x ) ) |
| 104 | 103 | 3adantl1 | |- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ( u e. L /\ v e. L ) ) -> E. x e. L ( `' F " ( u i^i v ) ) = ( `' F " x ) ) |
| 105 | 104 | ad2ant2r | |- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( ( u e. L /\ v e. L ) /\ ( r = ( `' F " u ) /\ s = ( `' F " v ) ) ) ) -> E. x e. L ( `' F " ( u i^i v ) ) = ( `' F " x ) ) |
| 106 | simpll1 | |- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( ( u e. L /\ v e. L ) /\ ( r = ( `' F " u ) /\ s = ( `' F " v ) ) ) ) -> Y e. A ) |
|
| 107 | cnvimass | |- ( `' F " ( u i^i v ) ) C_ dom F |
|
| 108 | 107 43 | sseqtrid | |- ( F : Y --> X -> ( `' F " ( u i^i v ) ) C_ Y ) |
| 109 | 108 | 3ad2ant3 | |- ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) -> ( `' F " ( u i^i v ) ) C_ Y ) |
| 110 | 109 | ad2antrr | |- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( ( u e. L /\ v e. L ) /\ ( r = ( `' F " u ) /\ s = ( `' F " v ) ) ) ) -> ( `' F " ( u i^i v ) ) C_ Y ) |
| 111 | 106 110 | ssexd | |- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( ( u e. L /\ v e. L ) /\ ( r = ( `' F " u ) /\ s = ( `' F " v ) ) ) ) -> ( `' F " ( u i^i v ) ) e. _V ) |
| 112 | 19 | elrnmpt | |- ( ( `' F " ( u i^i v ) ) e. _V -> ( ( `' F " ( u i^i v ) ) e. ran ( x e. L |-> ( `' F " x ) ) <-> E. x e. L ( `' F " ( u i^i v ) ) = ( `' F " x ) ) ) |
| 113 | 111 112 | syl | |- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( ( u e. L /\ v e. L ) /\ ( r = ( `' F " u ) /\ s = ( `' F " v ) ) ) ) -> ( ( `' F " ( u i^i v ) ) e. ran ( x e. L |-> ( `' F " x ) ) <-> E. x e. L ( `' F " ( u i^i v ) ) = ( `' F " x ) ) ) |
| 114 | 105 113 | mpbird | |- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( ( u e. L /\ v e. L ) /\ ( r = ( `' F " u ) /\ s = ( `' F " v ) ) ) ) -> ( `' F " ( u i^i v ) ) e. ran ( x e. L |-> ( `' F " x ) ) ) |
| 115 | simprrl | |- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( ( u e. L /\ v e. L ) /\ ( r = ( `' F " u ) /\ s = ( `' F " v ) ) ) ) -> r = ( `' F " u ) ) |
|
| 116 | simprrr | |- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( ( u e. L /\ v e. L ) /\ ( r = ( `' F " u ) /\ s = ( `' F " v ) ) ) ) -> s = ( `' F " v ) ) |
|
| 117 | 115 116 | ineq12d | |- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( ( u e. L /\ v e. L ) /\ ( r = ( `' F " u ) /\ s = ( `' F " v ) ) ) ) -> ( r i^i s ) = ( ( `' F " u ) i^i ( `' F " v ) ) ) |
| 118 | funcnvcnv | |- ( Fun F -> Fun `' `' F ) |
|
| 119 | imain | |- ( Fun `' `' F -> ( `' F " ( u i^i v ) ) = ( ( `' F " u ) i^i ( `' F " v ) ) ) |
|
| 120 | 40 118 119 | 3syl | |- ( F : Y --> X -> ( `' F " ( u i^i v ) ) = ( ( `' F " u ) i^i ( `' F " v ) ) ) |
| 121 | 120 | 3ad2ant3 | |- ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) -> ( `' F " ( u i^i v ) ) = ( ( `' F " u ) i^i ( `' F " v ) ) ) |
| 122 | 121 | ad2antrr | |- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( ( u e. L /\ v e. L ) /\ ( r = ( `' F " u ) /\ s = ( `' F " v ) ) ) ) -> ( `' F " ( u i^i v ) ) = ( ( `' F " u ) i^i ( `' F " v ) ) ) |
| 123 | 117 122 | eqtr4d | |- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( ( u e. L /\ v e. L ) /\ ( r = ( `' F " u ) /\ s = ( `' F " v ) ) ) ) -> ( r i^i s ) = ( `' F " ( u i^i v ) ) ) |
| 124 | eqimss2 | |- ( ( r i^i s ) = ( `' F " ( u i^i v ) ) -> ( `' F " ( u i^i v ) ) C_ ( r i^i s ) ) |
|
| 125 | 123 124 | syl | |- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( ( u e. L /\ v e. L ) /\ ( r = ( `' F " u ) /\ s = ( `' F " v ) ) ) ) -> ( `' F " ( u i^i v ) ) C_ ( r i^i s ) ) |
| 126 | sseq1 | |- ( t = ( `' F " ( u i^i v ) ) -> ( t C_ ( r i^i s ) <-> ( `' F " ( u i^i v ) ) C_ ( r i^i s ) ) ) |
|
| 127 | 126 | rspcev | |- ( ( ( `' F " ( u i^i v ) ) e. ran ( x e. L |-> ( `' F " x ) ) /\ ( `' F " ( u i^i v ) ) C_ ( r i^i s ) ) -> E. t e. ran ( x e. L |-> ( `' F " x ) ) t C_ ( r i^i s ) ) |
| 128 | 114 125 127 | syl2anc | |- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( ( u e. L /\ v e. L ) /\ ( r = ( `' F " u ) /\ s = ( `' F " v ) ) ) ) -> E. t e. ran ( x e. L |-> ( `' F " x ) ) t C_ ( r i^i s ) ) |
| 129 | 128 | exp32 | |- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ( ( u e. L /\ v e. L ) -> ( ( r = ( `' F " u ) /\ s = ( `' F " v ) ) -> E. t e. ran ( x e. L |-> ( `' F " x ) ) t C_ ( r i^i s ) ) ) ) |
| 130 | 129 | rexlimdvv | |- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ( E. u e. L E. v e. L ( r = ( `' F " u ) /\ s = ( `' F " v ) ) -> E. t e. ran ( x e. L |-> ( `' F " x ) ) t C_ ( r i^i s ) ) ) |
| 131 | 96 130 | biimtrid | |- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ( ( r e. ran ( x e. L |-> ( `' F " x ) ) /\ s e. ran ( x e. L |-> ( `' F " x ) ) ) -> E. t e. ran ( x e. L |-> ( `' F " x ) ) t C_ ( r i^i s ) ) ) |
| 132 | 131 | ralrimivv | |- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> A. r e. ran ( x e. L |-> ( `' F " x ) ) A. s e. ran ( x e. L |-> ( `' F " x ) ) E. t e. ran ( x e. L |-> ( `' F " x ) ) t C_ ( r i^i s ) ) |
| 133 | 24 81 132 | 3jca | |- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ( ran ( x e. L |-> ( `' F " x ) ) =/= (/) /\ (/) e/ ran ( x e. L |-> ( `' F " x ) ) /\ A. r e. ran ( x e. L |-> ( `' F " x ) ) A. s e. ran ( x e. L |-> ( `' F " x ) ) E. t e. ran ( x e. L |-> ( `' F " x ) ) t C_ ( r i^i s ) ) ) |
| 134 | isfbas2 | |- ( Y e. A -> ( ran ( x e. L |-> ( `' F " x ) ) e. ( fBas ` Y ) <-> ( ran ( x e. L |-> ( `' F " x ) ) C_ ~P Y /\ ( ran ( x e. L |-> ( `' F " x ) ) =/= (/) /\ (/) e/ ran ( x e. L |-> ( `' F " x ) ) /\ A. r e. ran ( x e. L |-> ( `' F " x ) ) A. s e. ran ( x e. L |-> ( `' F " x ) ) E. t e. ran ( x e. L |-> ( `' F " x ) ) t C_ ( r i^i s ) ) ) ) ) |
|
| 135 | 1 134 | syl | |- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ( ran ( x e. L |-> ( `' F " x ) ) e. ( fBas ` Y ) <-> ( ran ( x e. L |-> ( `' F " x ) ) C_ ~P Y /\ ( ran ( x e. L |-> ( `' F " x ) ) =/= (/) /\ (/) e/ ran ( x e. L |-> ( `' F " x ) ) /\ A. r e. ran ( x e. L |-> ( `' F " x ) ) A. s e. ran ( x e. L |-> ( `' F " x ) ) E. t e. ran ( x e. L |-> ( `' F " x ) ) t C_ ( r i^i s ) ) ) ) ) |
| 136 | 8 133 135 | mpbir2and | |- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ran ( x e. L |-> ( `' F " x ) ) e. ( fBas ` Y ) ) |