This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate " F is a filter base." (Contributed by Jeff Hankins, 1-Sep-2009) (Revised by Stefan O'Rear, 28-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isfbas2 | ⊢ ( 𝐵 ∈ 𝐴 → ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ↔ ( 𝐹 ⊆ 𝒫 𝐵 ∧ ( 𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfbas | ⊢ ( 𝐵 ∈ 𝐴 → ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ↔ ( 𝐹 ⊆ 𝒫 𝐵 ∧ ( 𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ( 𝐹 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ≠ ∅ ) ) ) ) | |
| 2 | elin | ⊢ ( 𝑧 ∈ ( 𝐹 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ↔ ( 𝑧 ∈ 𝐹 ∧ 𝑧 ∈ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) | |
| 3 | velpw | ⊢ ( 𝑧 ∈ 𝒫 ( 𝑥 ∩ 𝑦 ) ↔ 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) | |
| 4 | 3 | anbi2i | ⊢ ( ( 𝑧 ∈ 𝐹 ∧ 𝑧 ∈ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ↔ ( 𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) |
| 5 | 2 4 | bitri | ⊢ ( 𝑧 ∈ ( 𝐹 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ↔ ( 𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) |
| 6 | 5 | exbii | ⊢ ( ∃ 𝑧 𝑧 ∈ ( 𝐹 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ↔ ∃ 𝑧 ( 𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) |
| 7 | n0 | ⊢ ( ( 𝐹 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ≠ ∅ ↔ ∃ 𝑧 𝑧 ∈ ( 𝐹 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) | |
| 8 | df-rex | ⊢ ( ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ↔ ∃ 𝑧 ( 𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) | |
| 9 | 6 7 8 | 3bitr4i | ⊢ ( ( 𝐹 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ≠ ∅ ↔ ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) |
| 10 | 9 | 2ralbii | ⊢ ( ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ( 𝐹 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ≠ ∅ ↔ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) |
| 11 | 10 | 3anbi3i | ⊢ ( ( 𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ( 𝐹 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ≠ ∅ ) ↔ ( 𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) |
| 12 | 11 | anbi2i | ⊢ ( ( 𝐹 ⊆ 𝒫 𝐵 ∧ ( 𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ( 𝐹 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ≠ ∅ ) ) ↔ ( 𝐹 ⊆ 𝒫 𝐵 ∧ ( 𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) ) |
| 13 | 1 12 | bitrdi | ⊢ ( 𝐵 ∈ 𝐴 → ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ↔ ( 𝐹 ⊆ 𝒫 𝐵 ∧ ( 𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) ) ) |