This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for radcnvlt1 , radcnvle . If X is a point closer to zero than Y and the power series converges at Y , then it converges at X . (Contributed by Mario Carneiro, 31-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pser.g | ⊢ 𝐺 = ( 𝑥 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ) | |
| radcnv.a | ⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) | ||
| psergf.x | ⊢ ( 𝜑 → 𝑋 ∈ ℂ ) | ||
| radcnvlem2.y | ⊢ ( 𝜑 → 𝑌 ∈ ℂ ) | ||
| radcnvlem2.a | ⊢ ( 𝜑 → ( abs ‘ 𝑋 ) < ( abs ‘ 𝑌 ) ) | ||
| radcnvlem2.c | ⊢ ( 𝜑 → seq 0 ( + , ( 𝐺 ‘ 𝑌 ) ) ∈ dom ⇝ ) | ||
| Assertion | radcnvlem3 | ⊢ ( 𝜑 → seq 0 ( + , ( 𝐺 ‘ 𝑋 ) ) ∈ dom ⇝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pser.g | ⊢ 𝐺 = ( 𝑥 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ) | |
| 2 | radcnv.a | ⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) | |
| 3 | psergf.x | ⊢ ( 𝜑 → 𝑋 ∈ ℂ ) | |
| 4 | radcnvlem2.y | ⊢ ( 𝜑 → 𝑌 ∈ ℂ ) | |
| 5 | radcnvlem2.a | ⊢ ( 𝜑 → ( abs ‘ 𝑋 ) < ( abs ‘ 𝑌 ) ) | |
| 6 | radcnvlem2.c | ⊢ ( 𝜑 → seq 0 ( + , ( 𝐺 ‘ 𝑌 ) ) ∈ dom ⇝ ) | |
| 7 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 8 | 0zd | ⊢ ( 𝜑 → 0 ∈ ℤ ) | |
| 9 | 1 2 3 | psergf | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝑋 ) : ℕ0 ⟶ ℂ ) |
| 10 | fvco3 | ⊢ ( ( ( 𝐺 ‘ 𝑋 ) : ℕ0 ⟶ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ( abs ∘ ( 𝐺 ‘ 𝑋 ) ) ‘ 𝑘 ) = ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑘 ) ) ) | |
| 11 | 9 10 | sylan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( abs ∘ ( 𝐺 ‘ 𝑋 ) ) ‘ 𝑘 ) = ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑘 ) ) ) |
| 12 | 9 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑘 ) ∈ ℂ ) |
| 13 | 1 2 3 4 5 6 | radcnvlem2 | ⊢ ( 𝜑 → seq 0 ( + , ( abs ∘ ( 𝐺 ‘ 𝑋 ) ) ) ∈ dom ⇝ ) |
| 14 | 7 8 11 12 13 | abscvgcvg | ⊢ ( 𝜑 → seq 0 ( + , ( 𝐺 ‘ 𝑋 ) ) ∈ dom ⇝ ) |