This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the cumulative hierarchy of sets function expressed recursively. Theorem 7Q of Enderton p. 202. (Contributed by NM, 25-Nov-2003) (Revised by Mario Carneiro, 17-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | r1val1 | ⊢ ( 𝐴 ∈ dom 𝑅1 → ( 𝑅1 ‘ 𝐴 ) = ∪ 𝑥 ∈ 𝐴 𝒫 ( 𝑅1 ‘ 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | ⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ 𝐴 = ∅ ) → 𝐴 = ∅ ) | |
| 2 | 1 | fveq2d | ⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ 𝐴 = ∅ ) → ( 𝑅1 ‘ 𝐴 ) = ( 𝑅1 ‘ ∅ ) ) |
| 3 | r10 | ⊢ ( 𝑅1 ‘ ∅ ) = ∅ | |
| 4 | 2 3 | eqtrdi | ⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ 𝐴 = ∅ ) → ( 𝑅1 ‘ 𝐴 ) = ∅ ) |
| 5 | 0ss | ⊢ ∅ ⊆ ∪ 𝑥 ∈ 𝐴 𝒫 ( 𝑅1 ‘ 𝑥 ) | |
| 6 | 5 | a1i | ⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ 𝐴 = ∅ ) → ∅ ⊆ ∪ 𝑥 ∈ 𝐴 𝒫 ( 𝑅1 ‘ 𝑥 ) ) |
| 7 | 4 6 | eqsstrd | ⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ 𝐴 = ∅ ) → ( 𝑅1 ‘ 𝐴 ) ⊆ ∪ 𝑥 ∈ 𝐴 𝒫 ( 𝑅1 ‘ 𝑥 ) ) |
| 8 | nfv | ⊢ Ⅎ 𝑥 𝐴 ∈ dom 𝑅1 | |
| 9 | nfcv | ⊢ Ⅎ 𝑥 ( 𝑅1 ‘ 𝐴 ) | |
| 10 | nfiu1 | ⊢ Ⅎ 𝑥 ∪ 𝑥 ∈ 𝐴 𝒫 ( 𝑅1 ‘ 𝑥 ) | |
| 11 | 9 10 | nfss | ⊢ Ⅎ 𝑥 ( 𝑅1 ‘ 𝐴 ) ⊆ ∪ 𝑥 ∈ 𝐴 𝒫 ( 𝑅1 ‘ 𝑥 ) |
| 12 | simpr | ⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ 𝐴 = suc 𝑥 ) → 𝐴 = suc 𝑥 ) | |
| 13 | 12 | fveq2d | ⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ 𝐴 = suc 𝑥 ) → ( 𝑅1 ‘ 𝐴 ) = ( 𝑅1 ‘ suc 𝑥 ) ) |
| 14 | eleq1 | ⊢ ( 𝐴 = suc 𝑥 → ( 𝐴 ∈ dom 𝑅1 ↔ suc 𝑥 ∈ dom 𝑅1 ) ) | |
| 15 | 14 | biimpac | ⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ 𝐴 = suc 𝑥 ) → suc 𝑥 ∈ dom 𝑅1 ) |
| 16 | r1funlim | ⊢ ( Fun 𝑅1 ∧ Lim dom 𝑅1 ) | |
| 17 | 16 | simpri | ⊢ Lim dom 𝑅1 |
| 18 | limsuc | ⊢ ( Lim dom 𝑅1 → ( 𝑥 ∈ dom 𝑅1 ↔ suc 𝑥 ∈ dom 𝑅1 ) ) | |
| 19 | 17 18 | ax-mp | ⊢ ( 𝑥 ∈ dom 𝑅1 ↔ suc 𝑥 ∈ dom 𝑅1 ) |
| 20 | 15 19 | sylibr | ⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ 𝐴 = suc 𝑥 ) → 𝑥 ∈ dom 𝑅1 ) |
| 21 | r1sucg | ⊢ ( 𝑥 ∈ dom 𝑅1 → ( 𝑅1 ‘ suc 𝑥 ) = 𝒫 ( 𝑅1 ‘ 𝑥 ) ) | |
| 22 | 20 21 | syl | ⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ 𝐴 = suc 𝑥 ) → ( 𝑅1 ‘ suc 𝑥 ) = 𝒫 ( 𝑅1 ‘ 𝑥 ) ) |
| 23 | 13 22 | eqtrd | ⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ 𝐴 = suc 𝑥 ) → ( 𝑅1 ‘ 𝐴 ) = 𝒫 ( 𝑅1 ‘ 𝑥 ) ) |
| 24 | vex | ⊢ 𝑥 ∈ V | |
| 25 | 24 | sucid | ⊢ 𝑥 ∈ suc 𝑥 |
| 26 | 25 12 | eleqtrrid | ⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ 𝐴 = suc 𝑥 ) → 𝑥 ∈ 𝐴 ) |
| 27 | ssiun2 | ⊢ ( 𝑥 ∈ 𝐴 → 𝒫 ( 𝑅1 ‘ 𝑥 ) ⊆ ∪ 𝑥 ∈ 𝐴 𝒫 ( 𝑅1 ‘ 𝑥 ) ) | |
| 28 | 26 27 | syl | ⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ 𝐴 = suc 𝑥 ) → 𝒫 ( 𝑅1 ‘ 𝑥 ) ⊆ ∪ 𝑥 ∈ 𝐴 𝒫 ( 𝑅1 ‘ 𝑥 ) ) |
| 29 | 23 28 | eqsstrd | ⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ 𝐴 = suc 𝑥 ) → ( 𝑅1 ‘ 𝐴 ) ⊆ ∪ 𝑥 ∈ 𝐴 𝒫 ( 𝑅1 ‘ 𝑥 ) ) |
| 30 | 29 | ex | ⊢ ( 𝐴 ∈ dom 𝑅1 → ( 𝐴 = suc 𝑥 → ( 𝑅1 ‘ 𝐴 ) ⊆ ∪ 𝑥 ∈ 𝐴 𝒫 ( 𝑅1 ‘ 𝑥 ) ) ) |
| 31 | 30 | a1d | ⊢ ( 𝐴 ∈ dom 𝑅1 → ( 𝑥 ∈ On → ( 𝐴 = suc 𝑥 → ( 𝑅1 ‘ 𝐴 ) ⊆ ∪ 𝑥 ∈ 𝐴 𝒫 ( 𝑅1 ‘ 𝑥 ) ) ) ) |
| 32 | 8 11 31 | rexlimd | ⊢ ( 𝐴 ∈ dom 𝑅1 → ( ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 → ( 𝑅1 ‘ 𝐴 ) ⊆ ∪ 𝑥 ∈ 𝐴 𝒫 ( 𝑅1 ‘ 𝑥 ) ) ) |
| 33 | 32 | imp | ⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) → ( 𝑅1 ‘ 𝐴 ) ⊆ ∪ 𝑥 ∈ 𝐴 𝒫 ( 𝑅1 ‘ 𝑥 ) ) |
| 34 | r1limg | ⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ Lim 𝐴 ) → ( 𝑅1 ‘ 𝐴 ) = ∪ 𝑥 ∈ 𝐴 ( 𝑅1 ‘ 𝑥 ) ) | |
| 35 | r1tr | ⊢ Tr ( 𝑅1 ‘ 𝑥 ) | |
| 36 | dftr4 | ⊢ ( Tr ( 𝑅1 ‘ 𝑥 ) ↔ ( 𝑅1 ‘ 𝑥 ) ⊆ 𝒫 ( 𝑅1 ‘ 𝑥 ) ) | |
| 37 | 35 36 | mpbi | ⊢ ( 𝑅1 ‘ 𝑥 ) ⊆ 𝒫 ( 𝑅1 ‘ 𝑥 ) |
| 38 | 37 | a1i | ⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ Lim 𝐴 ) → ( 𝑅1 ‘ 𝑥 ) ⊆ 𝒫 ( 𝑅1 ‘ 𝑥 ) ) |
| 39 | 38 | ralrimivw | ⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ Lim 𝐴 ) → ∀ 𝑥 ∈ 𝐴 ( 𝑅1 ‘ 𝑥 ) ⊆ 𝒫 ( 𝑅1 ‘ 𝑥 ) ) |
| 40 | ss2iun | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑅1 ‘ 𝑥 ) ⊆ 𝒫 ( 𝑅1 ‘ 𝑥 ) → ∪ 𝑥 ∈ 𝐴 ( 𝑅1 ‘ 𝑥 ) ⊆ ∪ 𝑥 ∈ 𝐴 𝒫 ( 𝑅1 ‘ 𝑥 ) ) | |
| 41 | 39 40 | syl | ⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ Lim 𝐴 ) → ∪ 𝑥 ∈ 𝐴 ( 𝑅1 ‘ 𝑥 ) ⊆ ∪ 𝑥 ∈ 𝐴 𝒫 ( 𝑅1 ‘ 𝑥 ) ) |
| 42 | 34 41 | eqsstrd | ⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ Lim 𝐴 ) → ( 𝑅1 ‘ 𝐴 ) ⊆ ∪ 𝑥 ∈ 𝐴 𝒫 ( 𝑅1 ‘ 𝑥 ) ) |
| 43 | 42 | adantrl | ⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ ( 𝐴 ∈ V ∧ Lim 𝐴 ) ) → ( 𝑅1 ‘ 𝐴 ) ⊆ ∪ 𝑥 ∈ 𝐴 𝒫 ( 𝑅1 ‘ 𝑥 ) ) |
| 44 | limord | ⊢ ( Lim dom 𝑅1 → Ord dom 𝑅1 ) | |
| 45 | 17 44 | ax-mp | ⊢ Ord dom 𝑅1 |
| 46 | ordsson | ⊢ ( Ord dom 𝑅1 → dom 𝑅1 ⊆ On ) | |
| 47 | 45 46 | ax-mp | ⊢ dom 𝑅1 ⊆ On |
| 48 | 47 | sseli | ⊢ ( 𝐴 ∈ dom 𝑅1 → 𝐴 ∈ On ) |
| 49 | onzsl | ⊢ ( 𝐴 ∈ On ↔ ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ∨ ( 𝐴 ∈ V ∧ Lim 𝐴 ) ) ) | |
| 50 | 48 49 | sylib | ⊢ ( 𝐴 ∈ dom 𝑅1 → ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ∨ ( 𝐴 ∈ V ∧ Lim 𝐴 ) ) ) |
| 51 | 7 33 43 50 | mpjao3dan | ⊢ ( 𝐴 ∈ dom 𝑅1 → ( 𝑅1 ‘ 𝐴 ) ⊆ ∪ 𝑥 ∈ 𝐴 𝒫 ( 𝑅1 ‘ 𝑥 ) ) |
| 52 | ordtr1 | ⊢ ( Ord dom 𝑅1 → ( ( 𝑥 ∈ 𝐴 ∧ 𝐴 ∈ dom 𝑅1 ) → 𝑥 ∈ dom 𝑅1 ) ) | |
| 53 | 45 52 | ax-mp | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐴 ∈ dom 𝑅1 ) → 𝑥 ∈ dom 𝑅1 ) |
| 54 | 53 | ancoms | ⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ dom 𝑅1 ) |
| 55 | 54 21 | syl | ⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑅1 ‘ suc 𝑥 ) = 𝒫 ( 𝑅1 ‘ 𝑥 ) ) |
| 56 | simpr | ⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) | |
| 57 | ordelord | ⊢ ( ( Ord dom 𝑅1 ∧ 𝐴 ∈ dom 𝑅1 ) → Ord 𝐴 ) | |
| 58 | 45 57 | mpan | ⊢ ( 𝐴 ∈ dom 𝑅1 → Ord 𝐴 ) |
| 59 | 58 | adantr | ⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ 𝑥 ∈ 𝐴 ) → Ord 𝐴 ) |
| 60 | ordelsuc | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ Ord 𝐴 ) → ( 𝑥 ∈ 𝐴 ↔ suc 𝑥 ⊆ 𝐴 ) ) | |
| 61 | 56 59 60 | syl2anc | ⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ∈ 𝐴 ↔ suc 𝑥 ⊆ 𝐴 ) ) |
| 62 | 56 61 | mpbid | ⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ 𝑥 ∈ 𝐴 ) → suc 𝑥 ⊆ 𝐴 ) |
| 63 | 54 19 | sylib | ⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ 𝑥 ∈ 𝐴 ) → suc 𝑥 ∈ dom 𝑅1 ) |
| 64 | simpl | ⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ 𝑥 ∈ 𝐴 ) → 𝐴 ∈ dom 𝑅1 ) | |
| 65 | r1ord3g | ⊢ ( ( suc 𝑥 ∈ dom 𝑅1 ∧ 𝐴 ∈ dom 𝑅1 ) → ( suc 𝑥 ⊆ 𝐴 → ( 𝑅1 ‘ suc 𝑥 ) ⊆ ( 𝑅1 ‘ 𝐴 ) ) ) | |
| 66 | 63 64 65 | syl2anc | ⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ 𝑥 ∈ 𝐴 ) → ( suc 𝑥 ⊆ 𝐴 → ( 𝑅1 ‘ suc 𝑥 ) ⊆ ( 𝑅1 ‘ 𝐴 ) ) ) |
| 67 | 62 66 | mpd | ⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑅1 ‘ suc 𝑥 ) ⊆ ( 𝑅1 ‘ 𝐴 ) ) |
| 68 | 55 67 | eqsstrrd | ⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ 𝑥 ∈ 𝐴 ) → 𝒫 ( 𝑅1 ‘ 𝑥 ) ⊆ ( 𝑅1 ‘ 𝐴 ) ) |
| 69 | 68 | ralrimiva | ⊢ ( 𝐴 ∈ dom 𝑅1 → ∀ 𝑥 ∈ 𝐴 𝒫 ( 𝑅1 ‘ 𝑥 ) ⊆ ( 𝑅1 ‘ 𝐴 ) ) |
| 70 | iunss | ⊢ ( ∪ 𝑥 ∈ 𝐴 𝒫 ( 𝑅1 ‘ 𝑥 ) ⊆ ( 𝑅1 ‘ 𝐴 ) ↔ ∀ 𝑥 ∈ 𝐴 𝒫 ( 𝑅1 ‘ 𝑥 ) ⊆ ( 𝑅1 ‘ 𝐴 ) ) | |
| 71 | 69 70 | sylibr | ⊢ ( 𝐴 ∈ dom 𝑅1 → ∪ 𝑥 ∈ 𝐴 𝒫 ( 𝑅1 ‘ 𝑥 ) ⊆ ( 𝑅1 ‘ 𝐴 ) ) |
| 72 | 51 71 | eqssd | ⊢ ( 𝐴 ∈ dom 𝑅1 → ( 𝑅1 ‘ 𝐴 ) = ∪ 𝑥 ∈ 𝐴 𝒫 ( 𝑅1 ‘ 𝑥 ) ) |