This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the cumulative hierarchy of sets function at a limit ordinal. Part of Definition 9.9 of TakeutiZaring p. 76. (Contributed by Mario Carneiro, 16-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | r1limg | ⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ Lim 𝐴 ) → ( 𝑅1 ‘ 𝐴 ) = ∪ 𝑥 ∈ 𝐴 ( 𝑅1 ‘ 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-r1 | ⊢ 𝑅1 = rec ( ( 𝑦 ∈ V ↦ 𝒫 𝑦 ) , ∅ ) | |
| 2 | 1 | dmeqi | ⊢ dom 𝑅1 = dom rec ( ( 𝑦 ∈ V ↦ 𝒫 𝑦 ) , ∅ ) |
| 3 | 2 | eleq2i | ⊢ ( 𝐴 ∈ dom 𝑅1 ↔ 𝐴 ∈ dom rec ( ( 𝑦 ∈ V ↦ 𝒫 𝑦 ) , ∅ ) ) |
| 4 | rdglimg | ⊢ ( ( 𝐴 ∈ dom rec ( ( 𝑦 ∈ V ↦ 𝒫 𝑦 ) , ∅ ) ∧ Lim 𝐴 ) → ( rec ( ( 𝑦 ∈ V ↦ 𝒫 𝑦 ) , ∅ ) ‘ 𝐴 ) = ∪ ( rec ( ( 𝑦 ∈ V ↦ 𝒫 𝑦 ) , ∅ ) “ 𝐴 ) ) | |
| 5 | 3 4 | sylanb | ⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ Lim 𝐴 ) → ( rec ( ( 𝑦 ∈ V ↦ 𝒫 𝑦 ) , ∅ ) ‘ 𝐴 ) = ∪ ( rec ( ( 𝑦 ∈ V ↦ 𝒫 𝑦 ) , ∅ ) “ 𝐴 ) ) |
| 6 | 1 | fveq1i | ⊢ ( 𝑅1 ‘ 𝐴 ) = ( rec ( ( 𝑦 ∈ V ↦ 𝒫 𝑦 ) , ∅ ) ‘ 𝐴 ) |
| 7 | r1funlim | ⊢ ( Fun 𝑅1 ∧ Lim dom 𝑅1 ) | |
| 8 | 7 | simpli | ⊢ Fun 𝑅1 |
| 9 | funiunfv | ⊢ ( Fun 𝑅1 → ∪ 𝑥 ∈ 𝐴 ( 𝑅1 ‘ 𝑥 ) = ∪ ( 𝑅1 “ 𝐴 ) ) | |
| 10 | 8 9 | ax-mp | ⊢ ∪ 𝑥 ∈ 𝐴 ( 𝑅1 ‘ 𝑥 ) = ∪ ( 𝑅1 “ 𝐴 ) |
| 11 | 1 | imaeq1i | ⊢ ( 𝑅1 “ 𝐴 ) = ( rec ( ( 𝑦 ∈ V ↦ 𝒫 𝑦 ) , ∅ ) “ 𝐴 ) |
| 12 | 11 | unieqi | ⊢ ∪ ( 𝑅1 “ 𝐴 ) = ∪ ( rec ( ( 𝑦 ∈ V ↦ 𝒫 𝑦 ) , ∅ ) “ 𝐴 ) |
| 13 | 10 12 | eqtri | ⊢ ∪ 𝑥 ∈ 𝐴 ( 𝑅1 ‘ 𝑥 ) = ∪ ( rec ( ( 𝑦 ∈ V ↦ 𝒫 𝑦 ) , ∅ ) “ 𝐴 ) |
| 14 | 5 6 13 | 3eqtr4g | ⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ Lim 𝐴 ) → ( 𝑅1 ‘ 𝐴 ) = ∪ 𝑥 ∈ 𝐴 ( 𝑅1 ‘ 𝑥 ) ) |