This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the cumulative hierarchy of sets function at a successor ordinal. Part of Definition 9.9 of TakeutiZaring p. 76. (Contributed by Mario Carneiro, 16-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | r1sucg | ⊢ ( 𝐴 ∈ dom 𝑅1 → ( 𝑅1 ‘ suc 𝐴 ) = 𝒫 ( 𝑅1 ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rdgsucg | ⊢ ( 𝐴 ∈ dom rec ( ( 𝑥 ∈ V ↦ 𝒫 𝑥 ) , ∅ ) → ( rec ( ( 𝑥 ∈ V ↦ 𝒫 𝑥 ) , ∅ ) ‘ suc 𝐴 ) = ( ( 𝑥 ∈ V ↦ 𝒫 𝑥 ) ‘ ( rec ( ( 𝑥 ∈ V ↦ 𝒫 𝑥 ) , ∅ ) ‘ 𝐴 ) ) ) | |
| 2 | df-r1 | ⊢ 𝑅1 = rec ( ( 𝑥 ∈ V ↦ 𝒫 𝑥 ) , ∅ ) | |
| 3 | 2 | dmeqi | ⊢ dom 𝑅1 = dom rec ( ( 𝑥 ∈ V ↦ 𝒫 𝑥 ) , ∅ ) |
| 4 | 1 3 | eleq2s | ⊢ ( 𝐴 ∈ dom 𝑅1 → ( rec ( ( 𝑥 ∈ V ↦ 𝒫 𝑥 ) , ∅ ) ‘ suc 𝐴 ) = ( ( 𝑥 ∈ V ↦ 𝒫 𝑥 ) ‘ ( rec ( ( 𝑥 ∈ V ↦ 𝒫 𝑥 ) , ∅ ) ‘ 𝐴 ) ) ) |
| 5 | 2 | fveq1i | ⊢ ( 𝑅1 ‘ suc 𝐴 ) = ( rec ( ( 𝑥 ∈ V ↦ 𝒫 𝑥 ) , ∅ ) ‘ suc 𝐴 ) |
| 6 | fvex | ⊢ ( 𝑅1 ‘ 𝐴 ) ∈ V | |
| 7 | pweq | ⊢ ( 𝑥 = ( 𝑅1 ‘ 𝐴 ) → 𝒫 𝑥 = 𝒫 ( 𝑅1 ‘ 𝐴 ) ) | |
| 8 | eqid | ⊢ ( 𝑥 ∈ V ↦ 𝒫 𝑥 ) = ( 𝑥 ∈ V ↦ 𝒫 𝑥 ) | |
| 9 | 6 | pwex | ⊢ 𝒫 ( 𝑅1 ‘ 𝐴 ) ∈ V |
| 10 | 7 8 9 | fvmpt | ⊢ ( ( 𝑅1 ‘ 𝐴 ) ∈ V → ( ( 𝑥 ∈ V ↦ 𝒫 𝑥 ) ‘ ( 𝑅1 ‘ 𝐴 ) ) = 𝒫 ( 𝑅1 ‘ 𝐴 ) ) |
| 11 | 6 10 | ax-mp | ⊢ ( ( 𝑥 ∈ V ↦ 𝒫 𝑥 ) ‘ ( 𝑅1 ‘ 𝐴 ) ) = 𝒫 ( 𝑅1 ‘ 𝐴 ) |
| 12 | 2 | fveq1i | ⊢ ( 𝑅1 ‘ 𝐴 ) = ( rec ( ( 𝑥 ∈ V ↦ 𝒫 𝑥 ) , ∅ ) ‘ 𝐴 ) |
| 13 | 12 | fveq2i | ⊢ ( ( 𝑥 ∈ V ↦ 𝒫 𝑥 ) ‘ ( 𝑅1 ‘ 𝐴 ) ) = ( ( 𝑥 ∈ V ↦ 𝒫 𝑥 ) ‘ ( rec ( ( 𝑥 ∈ V ↦ 𝒫 𝑥 ) , ∅ ) ‘ 𝐴 ) ) |
| 14 | 11 13 | eqtr3i | ⊢ 𝒫 ( 𝑅1 ‘ 𝐴 ) = ( ( 𝑥 ∈ V ↦ 𝒫 𝑥 ) ‘ ( rec ( ( 𝑥 ∈ V ↦ 𝒫 𝑥 ) , ∅ ) ‘ 𝐴 ) ) |
| 15 | 4 5 14 | 3eqtr4g | ⊢ ( 𝐴 ∈ dom 𝑅1 → ( 𝑅1 ‘ suc 𝐴 ) = 𝒫 ( 𝑅1 ‘ 𝐴 ) ) |