This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering relation for the cumulative hierarchy of sets. Part of Theorem 3.3(i) of BellMachover p. 478. (Contributed by NM, 22-Sep-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | r1ord3g | ⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ 𝐵 ∈ dom 𝑅1 ) → ( 𝐴 ⊆ 𝐵 → ( 𝑅1 ‘ 𝐴 ) ⊆ ( 𝑅1 ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r1funlim | ⊢ ( Fun 𝑅1 ∧ Lim dom 𝑅1 ) | |
| 2 | 1 | simpri | ⊢ Lim dom 𝑅1 |
| 3 | limord | ⊢ ( Lim dom 𝑅1 → Ord dom 𝑅1 ) | |
| 4 | ordsson | ⊢ ( Ord dom 𝑅1 → dom 𝑅1 ⊆ On ) | |
| 5 | 2 3 4 | mp2b | ⊢ dom 𝑅1 ⊆ On |
| 6 | 5 | sseli | ⊢ ( 𝐴 ∈ dom 𝑅1 → 𝐴 ∈ On ) |
| 7 | 5 | sseli | ⊢ ( 𝐵 ∈ dom 𝑅1 → 𝐵 ∈ On ) |
| 8 | onsseleq | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ⊆ 𝐵 ↔ ( 𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ) ) ) | |
| 9 | 6 7 8 | syl2an | ⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ 𝐵 ∈ dom 𝑅1 ) → ( 𝐴 ⊆ 𝐵 ↔ ( 𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ) ) ) |
| 10 | r1tr | ⊢ Tr ( 𝑅1 ‘ 𝐵 ) | |
| 11 | r1ordg | ⊢ ( 𝐵 ∈ dom 𝑅1 → ( 𝐴 ∈ 𝐵 → ( 𝑅1 ‘ 𝐴 ) ∈ ( 𝑅1 ‘ 𝐵 ) ) ) | |
| 12 | 11 | adantl | ⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ 𝐵 ∈ dom 𝑅1 ) → ( 𝐴 ∈ 𝐵 → ( 𝑅1 ‘ 𝐴 ) ∈ ( 𝑅1 ‘ 𝐵 ) ) ) |
| 13 | trss | ⊢ ( Tr ( 𝑅1 ‘ 𝐵 ) → ( ( 𝑅1 ‘ 𝐴 ) ∈ ( 𝑅1 ‘ 𝐵 ) → ( 𝑅1 ‘ 𝐴 ) ⊆ ( 𝑅1 ‘ 𝐵 ) ) ) | |
| 14 | 10 12 13 | mpsylsyld | ⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ 𝐵 ∈ dom 𝑅1 ) → ( 𝐴 ∈ 𝐵 → ( 𝑅1 ‘ 𝐴 ) ⊆ ( 𝑅1 ‘ 𝐵 ) ) ) |
| 15 | fveq2 | ⊢ ( 𝐴 = 𝐵 → ( 𝑅1 ‘ 𝐴 ) = ( 𝑅1 ‘ 𝐵 ) ) | |
| 16 | eqimss | ⊢ ( ( 𝑅1 ‘ 𝐴 ) = ( 𝑅1 ‘ 𝐵 ) → ( 𝑅1 ‘ 𝐴 ) ⊆ ( 𝑅1 ‘ 𝐵 ) ) | |
| 17 | 15 16 | syl | ⊢ ( 𝐴 = 𝐵 → ( 𝑅1 ‘ 𝐴 ) ⊆ ( 𝑅1 ‘ 𝐵 ) ) |
| 18 | 17 | a1i | ⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ 𝐵 ∈ dom 𝑅1 ) → ( 𝐴 = 𝐵 → ( 𝑅1 ‘ 𝐴 ) ⊆ ( 𝑅1 ‘ 𝐵 ) ) ) |
| 19 | 14 18 | jaod | ⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ 𝐵 ∈ dom 𝑅1 ) → ( ( 𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ) → ( 𝑅1 ‘ 𝐴 ) ⊆ ( 𝑅1 ‘ 𝐵 ) ) ) |
| 20 | 9 19 | sylbid | ⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ 𝐵 ∈ dom 𝑅1 ) → ( 𝐴 ⊆ 𝐵 → ( 𝑅1 ‘ 𝐴 ) ⊆ ( 𝑅1 ‘ 𝐵 ) ) ) |