This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An element of an ordinal class is ordinal. Proposition 7.6 of TakeutiZaring p. 36. Lemma 1.3 of Schloeder p. 1. (Contributed by NM, 23-Apr-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordelord | ⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ) → Ord 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 | ⊢ ( 𝑥 = 𝐵 → ( 𝑥 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴 ) ) | |
| 2 | 1 | anbi2d | ⊢ ( 𝑥 = 𝐵 → ( ( Ord 𝐴 ∧ 𝑥 ∈ 𝐴 ) ↔ ( Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ) ) ) |
| 3 | ordeq | ⊢ ( 𝑥 = 𝐵 → ( Ord 𝑥 ↔ Ord 𝐵 ) ) | |
| 4 | 2 3 | imbi12d | ⊢ ( 𝑥 = 𝐵 → ( ( ( Ord 𝐴 ∧ 𝑥 ∈ 𝐴 ) → Ord 𝑥 ) ↔ ( ( Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ) → Ord 𝐵 ) ) ) |
| 5 | simpll | ⊢ ( ( ( Ord 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) ) → Ord 𝐴 ) | |
| 6 | 3anrot | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) ↔ ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) ) | |
| 7 | 3anass | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) ) ) | |
| 8 | 6 7 | bitr3i | ⊢ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) ) ) |
| 9 | ordtr | ⊢ ( Ord 𝐴 → Tr 𝐴 ) | |
| 10 | trel3 | ⊢ ( Tr 𝐴 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) ) | |
| 11 | 9 10 | syl | ⊢ ( Ord 𝐴 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) ) |
| 12 | 8 11 | biimtrrid | ⊢ ( Ord 𝐴 → ( ( 𝑥 ∈ 𝐴 ∧ ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) ) → 𝑧 ∈ 𝐴 ) ) |
| 13 | 12 | impl | ⊢ ( ( ( Ord 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) ) → 𝑧 ∈ 𝐴 ) |
| 14 | trel | ⊢ ( Tr 𝐴 → ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐴 ) ) | |
| 15 | 9 14 | syl | ⊢ ( Ord 𝐴 → ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐴 ) ) |
| 16 | 15 | expcomd | ⊢ ( Ord 𝐴 → ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐴 ) ) ) |
| 17 | 16 | imp31 | ⊢ ( ( ( Ord 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ 𝐴 ) |
| 18 | 17 | adantrl | ⊢ ( ( ( Ord 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) ) → 𝑦 ∈ 𝐴 ) |
| 19 | simplr | ⊢ ( ( ( Ord 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) ) → 𝑥 ∈ 𝐴 ) | |
| 20 | ordwe | ⊢ ( Ord 𝐴 → E We 𝐴 ) | |
| 21 | wetrep | ⊢ ( ( E We 𝐴 ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ) | |
| 22 | 20 21 | sylan | ⊢ ( ( Ord 𝐴 ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ) |
| 23 | 5 13 18 19 22 | syl13anc | ⊢ ( ( ( Ord 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) ) → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ) |
| 24 | 23 | ex | ⊢ ( ( Ord 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ) ) |
| 25 | 24 | pm2.43d | ⊢ ( ( Ord 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ) |
| 26 | 25 | alrimivv | ⊢ ( ( Ord 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ) |
| 27 | dftr2 | ⊢ ( Tr 𝑥 ↔ ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ) | |
| 28 | 26 27 | sylibr | ⊢ ( ( Ord 𝐴 ∧ 𝑥 ∈ 𝐴 ) → Tr 𝑥 ) |
| 29 | trss | ⊢ ( Tr 𝐴 → ( 𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐴 ) ) | |
| 30 | 9 29 | syl | ⊢ ( Ord 𝐴 → ( 𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐴 ) ) |
| 31 | wess | ⊢ ( 𝑥 ⊆ 𝐴 → ( E We 𝐴 → E We 𝑥 ) ) | |
| 32 | 30 20 31 | syl6ci | ⊢ ( Ord 𝐴 → ( 𝑥 ∈ 𝐴 → E We 𝑥 ) ) |
| 33 | 32 | imp | ⊢ ( ( Ord 𝐴 ∧ 𝑥 ∈ 𝐴 ) → E We 𝑥 ) |
| 34 | df-ord | ⊢ ( Ord 𝑥 ↔ ( Tr 𝑥 ∧ E We 𝑥 ) ) | |
| 35 | 28 33 34 | sylanbrc | ⊢ ( ( Ord 𝐴 ∧ 𝑥 ∈ 𝐴 ) → Ord 𝑥 ) |
| 36 | 4 35 | vtoclg | ⊢ ( 𝐵 ∈ 𝐴 → ( ( Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ) → Ord 𝐵 ) ) |
| 37 | 36 | anabsi7 | ⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ) → Ord 𝐵 ) |