This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for tz9.12 . (Contributed by NM, 22-Sep-2003) (Revised by Mario Carneiro, 11-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tz9.12lem.1 | ⊢ 𝐴 ∈ V | |
| tz9.12lem.2 | ⊢ 𝐹 = ( 𝑧 ∈ V ↦ ∩ { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1 ‘ 𝑣 ) } ) | ||
| Assertion | tz9.12lem1 | ⊢ ( 𝐹 “ 𝐴 ) ⊆ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tz9.12lem.1 | ⊢ 𝐴 ∈ V | |
| 2 | tz9.12lem.2 | ⊢ 𝐹 = ( 𝑧 ∈ V ↦ ∩ { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1 ‘ 𝑣 ) } ) | |
| 3 | imassrn | ⊢ ( 𝐹 “ 𝐴 ) ⊆ ran 𝐹 | |
| 4 | 2 | rnmpt | ⊢ ran 𝐹 = { 𝑥 ∣ ∃ 𝑧 ∈ V 𝑥 = ∩ { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1 ‘ 𝑣 ) } } |
| 5 | id | ⊢ ( 𝑥 = ∩ { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1 ‘ 𝑣 ) } → 𝑥 = ∩ { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1 ‘ 𝑣 ) } ) | |
| 6 | ssrab2 | ⊢ { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1 ‘ 𝑣 ) } ⊆ On | |
| 7 | eqvisset | ⊢ ( 𝑥 = ∩ { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1 ‘ 𝑣 ) } → ∩ { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1 ‘ 𝑣 ) } ∈ V ) | |
| 8 | intex | ⊢ ( { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1 ‘ 𝑣 ) } ≠ ∅ ↔ ∩ { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1 ‘ 𝑣 ) } ∈ V ) | |
| 9 | 7 8 | sylibr | ⊢ ( 𝑥 = ∩ { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1 ‘ 𝑣 ) } → { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1 ‘ 𝑣 ) } ≠ ∅ ) |
| 10 | oninton | ⊢ ( ( { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1 ‘ 𝑣 ) } ⊆ On ∧ { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1 ‘ 𝑣 ) } ≠ ∅ ) → ∩ { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1 ‘ 𝑣 ) } ∈ On ) | |
| 11 | 6 9 10 | sylancr | ⊢ ( 𝑥 = ∩ { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1 ‘ 𝑣 ) } → ∩ { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1 ‘ 𝑣 ) } ∈ On ) |
| 12 | 5 11 | eqeltrd | ⊢ ( 𝑥 = ∩ { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1 ‘ 𝑣 ) } → 𝑥 ∈ On ) |
| 13 | 12 | rexlimivw | ⊢ ( ∃ 𝑧 ∈ V 𝑥 = ∩ { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1 ‘ 𝑣 ) } → 𝑥 ∈ On ) |
| 14 | 13 | abssi | ⊢ { 𝑥 ∣ ∃ 𝑧 ∈ V 𝑥 = ∩ { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1 ‘ 𝑣 ) } } ⊆ On |
| 15 | 4 14 | eqsstri | ⊢ ran 𝐹 ⊆ On |
| 16 | 3 15 | sstri | ⊢ ( 𝐹 “ 𝐴 ) ⊆ On |