This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the cumulative hierarchy of sets function expressed recursively. Theorem 7Q of Enderton p. 202. (Contributed by NM, 25-Nov-2003) (Revised by Mario Carneiro, 17-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | r1val1 | |- ( A e. dom R1 -> ( R1 ` A ) = U_ x e. A ~P ( R1 ` x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | |- ( ( A e. dom R1 /\ A = (/) ) -> A = (/) ) |
|
| 2 | 1 | fveq2d | |- ( ( A e. dom R1 /\ A = (/) ) -> ( R1 ` A ) = ( R1 ` (/) ) ) |
| 3 | r10 | |- ( R1 ` (/) ) = (/) |
|
| 4 | 2 3 | eqtrdi | |- ( ( A e. dom R1 /\ A = (/) ) -> ( R1 ` A ) = (/) ) |
| 5 | 0ss | |- (/) C_ U_ x e. A ~P ( R1 ` x ) |
|
| 6 | 5 | a1i | |- ( ( A e. dom R1 /\ A = (/) ) -> (/) C_ U_ x e. A ~P ( R1 ` x ) ) |
| 7 | 4 6 | eqsstrd | |- ( ( A e. dom R1 /\ A = (/) ) -> ( R1 ` A ) C_ U_ x e. A ~P ( R1 ` x ) ) |
| 8 | nfv | |- F/ x A e. dom R1 |
|
| 9 | nfcv | |- F/_ x ( R1 ` A ) |
|
| 10 | nfiu1 | |- F/_ x U_ x e. A ~P ( R1 ` x ) |
|
| 11 | 9 10 | nfss | |- F/ x ( R1 ` A ) C_ U_ x e. A ~P ( R1 ` x ) |
| 12 | simpr | |- ( ( A e. dom R1 /\ A = suc x ) -> A = suc x ) |
|
| 13 | 12 | fveq2d | |- ( ( A e. dom R1 /\ A = suc x ) -> ( R1 ` A ) = ( R1 ` suc x ) ) |
| 14 | eleq1 | |- ( A = suc x -> ( A e. dom R1 <-> suc x e. dom R1 ) ) |
|
| 15 | 14 | biimpac | |- ( ( A e. dom R1 /\ A = suc x ) -> suc x e. dom R1 ) |
| 16 | r1funlim | |- ( Fun R1 /\ Lim dom R1 ) |
|
| 17 | 16 | simpri | |- Lim dom R1 |
| 18 | limsuc | |- ( Lim dom R1 -> ( x e. dom R1 <-> suc x e. dom R1 ) ) |
|
| 19 | 17 18 | ax-mp | |- ( x e. dom R1 <-> suc x e. dom R1 ) |
| 20 | 15 19 | sylibr | |- ( ( A e. dom R1 /\ A = suc x ) -> x e. dom R1 ) |
| 21 | r1sucg | |- ( x e. dom R1 -> ( R1 ` suc x ) = ~P ( R1 ` x ) ) |
|
| 22 | 20 21 | syl | |- ( ( A e. dom R1 /\ A = suc x ) -> ( R1 ` suc x ) = ~P ( R1 ` x ) ) |
| 23 | 13 22 | eqtrd | |- ( ( A e. dom R1 /\ A = suc x ) -> ( R1 ` A ) = ~P ( R1 ` x ) ) |
| 24 | vex | |- x e. _V |
|
| 25 | 24 | sucid | |- x e. suc x |
| 26 | 25 12 | eleqtrrid | |- ( ( A e. dom R1 /\ A = suc x ) -> x e. A ) |
| 27 | ssiun2 | |- ( x e. A -> ~P ( R1 ` x ) C_ U_ x e. A ~P ( R1 ` x ) ) |
|
| 28 | 26 27 | syl | |- ( ( A e. dom R1 /\ A = suc x ) -> ~P ( R1 ` x ) C_ U_ x e. A ~P ( R1 ` x ) ) |
| 29 | 23 28 | eqsstrd | |- ( ( A e. dom R1 /\ A = suc x ) -> ( R1 ` A ) C_ U_ x e. A ~P ( R1 ` x ) ) |
| 30 | 29 | ex | |- ( A e. dom R1 -> ( A = suc x -> ( R1 ` A ) C_ U_ x e. A ~P ( R1 ` x ) ) ) |
| 31 | 30 | a1d | |- ( A e. dom R1 -> ( x e. On -> ( A = suc x -> ( R1 ` A ) C_ U_ x e. A ~P ( R1 ` x ) ) ) ) |
| 32 | 8 11 31 | rexlimd | |- ( A e. dom R1 -> ( E. x e. On A = suc x -> ( R1 ` A ) C_ U_ x e. A ~P ( R1 ` x ) ) ) |
| 33 | 32 | imp | |- ( ( A e. dom R1 /\ E. x e. On A = suc x ) -> ( R1 ` A ) C_ U_ x e. A ~P ( R1 ` x ) ) |
| 34 | r1limg | |- ( ( A e. dom R1 /\ Lim A ) -> ( R1 ` A ) = U_ x e. A ( R1 ` x ) ) |
|
| 35 | r1tr | |- Tr ( R1 ` x ) |
|
| 36 | dftr4 | |- ( Tr ( R1 ` x ) <-> ( R1 ` x ) C_ ~P ( R1 ` x ) ) |
|
| 37 | 35 36 | mpbi | |- ( R1 ` x ) C_ ~P ( R1 ` x ) |
| 38 | 37 | a1i | |- ( ( A e. dom R1 /\ Lim A ) -> ( R1 ` x ) C_ ~P ( R1 ` x ) ) |
| 39 | 38 | ralrimivw | |- ( ( A e. dom R1 /\ Lim A ) -> A. x e. A ( R1 ` x ) C_ ~P ( R1 ` x ) ) |
| 40 | ss2iun | |- ( A. x e. A ( R1 ` x ) C_ ~P ( R1 ` x ) -> U_ x e. A ( R1 ` x ) C_ U_ x e. A ~P ( R1 ` x ) ) |
|
| 41 | 39 40 | syl | |- ( ( A e. dom R1 /\ Lim A ) -> U_ x e. A ( R1 ` x ) C_ U_ x e. A ~P ( R1 ` x ) ) |
| 42 | 34 41 | eqsstrd | |- ( ( A e. dom R1 /\ Lim A ) -> ( R1 ` A ) C_ U_ x e. A ~P ( R1 ` x ) ) |
| 43 | 42 | adantrl | |- ( ( A e. dom R1 /\ ( A e. _V /\ Lim A ) ) -> ( R1 ` A ) C_ U_ x e. A ~P ( R1 ` x ) ) |
| 44 | limord | |- ( Lim dom R1 -> Ord dom R1 ) |
|
| 45 | 17 44 | ax-mp | |- Ord dom R1 |
| 46 | ordsson | |- ( Ord dom R1 -> dom R1 C_ On ) |
|
| 47 | 45 46 | ax-mp | |- dom R1 C_ On |
| 48 | 47 | sseli | |- ( A e. dom R1 -> A e. On ) |
| 49 | onzsl | |- ( A e. On <-> ( A = (/) \/ E. x e. On A = suc x \/ ( A e. _V /\ Lim A ) ) ) |
|
| 50 | 48 49 | sylib | |- ( A e. dom R1 -> ( A = (/) \/ E. x e. On A = suc x \/ ( A e. _V /\ Lim A ) ) ) |
| 51 | 7 33 43 50 | mpjao3dan | |- ( A e. dom R1 -> ( R1 ` A ) C_ U_ x e. A ~P ( R1 ` x ) ) |
| 52 | ordtr1 | |- ( Ord dom R1 -> ( ( x e. A /\ A e. dom R1 ) -> x e. dom R1 ) ) |
|
| 53 | 45 52 | ax-mp | |- ( ( x e. A /\ A e. dom R1 ) -> x e. dom R1 ) |
| 54 | 53 | ancoms | |- ( ( A e. dom R1 /\ x e. A ) -> x e. dom R1 ) |
| 55 | 54 21 | syl | |- ( ( A e. dom R1 /\ x e. A ) -> ( R1 ` suc x ) = ~P ( R1 ` x ) ) |
| 56 | simpr | |- ( ( A e. dom R1 /\ x e. A ) -> x e. A ) |
|
| 57 | ordelord | |- ( ( Ord dom R1 /\ A e. dom R1 ) -> Ord A ) |
|
| 58 | 45 57 | mpan | |- ( A e. dom R1 -> Ord A ) |
| 59 | 58 | adantr | |- ( ( A e. dom R1 /\ x e. A ) -> Ord A ) |
| 60 | ordelsuc | |- ( ( x e. A /\ Ord A ) -> ( x e. A <-> suc x C_ A ) ) |
|
| 61 | 56 59 60 | syl2anc | |- ( ( A e. dom R1 /\ x e. A ) -> ( x e. A <-> suc x C_ A ) ) |
| 62 | 56 61 | mpbid | |- ( ( A e. dom R1 /\ x e. A ) -> suc x C_ A ) |
| 63 | 54 19 | sylib | |- ( ( A e. dom R1 /\ x e. A ) -> suc x e. dom R1 ) |
| 64 | simpl | |- ( ( A e. dom R1 /\ x e. A ) -> A e. dom R1 ) |
|
| 65 | r1ord3g | |- ( ( suc x e. dom R1 /\ A e. dom R1 ) -> ( suc x C_ A -> ( R1 ` suc x ) C_ ( R1 ` A ) ) ) |
|
| 66 | 63 64 65 | syl2anc | |- ( ( A e. dom R1 /\ x e. A ) -> ( suc x C_ A -> ( R1 ` suc x ) C_ ( R1 ` A ) ) ) |
| 67 | 62 66 | mpd | |- ( ( A e. dom R1 /\ x e. A ) -> ( R1 ` suc x ) C_ ( R1 ` A ) ) |
| 68 | 55 67 | eqsstrrd | |- ( ( A e. dom R1 /\ x e. A ) -> ~P ( R1 ` x ) C_ ( R1 ` A ) ) |
| 69 | 68 | ralrimiva | |- ( A e. dom R1 -> A. x e. A ~P ( R1 ` x ) C_ ( R1 ` A ) ) |
| 70 | iunss | |- ( U_ x e. A ~P ( R1 ` x ) C_ ( R1 ` A ) <-> A. x e. A ~P ( R1 ` x ) C_ ( R1 ` A ) ) |
|
| 71 | 69 70 | sylibr | |- ( A e. dom R1 -> U_ x e. A ~P ( R1 ` x ) C_ ( R1 ` A ) ) |
| 72 | 51 71 | eqssd | |- ( A e. dom R1 -> ( R1 ` A ) = U_ x e. A ~P ( R1 ` x ) ) |