This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ptcnp . (Contributed by Mario Carneiro, 3-Feb-2015) (Revised by Mario Carneiro, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ptcnp.2 | ⊢ 𝐾 = ( ∏t ‘ 𝐹 ) | |
| ptcnp.3 | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | ||
| ptcnp.4 | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| ptcnp.5 | ⊢ ( 𝜑 → 𝐹 : 𝐼 ⟶ Top ) | ||
| ptcnp.6 | ⊢ ( 𝜑 → 𝐷 ∈ 𝑋 ) | ||
| ptcnp.7 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( ( 𝐽 CnP ( 𝐹 ‘ 𝑘 ) ) ‘ 𝐷 ) ) | ||
| ptcnplem.1 | ⊢ Ⅎ 𝑘 𝜓 | ||
| ptcnplem.2 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐺 Fn 𝐼 ) | ||
| ptcnplem.3 | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑘 ∈ 𝐼 ) → ( 𝐺 ‘ 𝑘 ) ∈ ( 𝐹 ‘ 𝑘 ) ) | ||
| ptcnplem.4 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑊 ∈ Fin ) | ||
| ptcnplem.5 | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑊 ) ) → ( 𝐺 ‘ 𝑘 ) = ∪ ( 𝐹 ‘ 𝑘 ) ) | ||
| ptcnplem.6 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) ∈ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ) | ||
| Assertion | ptcnplem | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ∃ 𝑧 ∈ 𝐽 ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ 𝑧 ) ⊆ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ptcnp.2 | ⊢ 𝐾 = ( ∏t ‘ 𝐹 ) | |
| 2 | ptcnp.3 | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 3 | ptcnp.4 | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 4 | ptcnp.5 | ⊢ ( 𝜑 → 𝐹 : 𝐼 ⟶ Top ) | |
| 5 | ptcnp.6 | ⊢ ( 𝜑 → 𝐷 ∈ 𝑋 ) | |
| 6 | ptcnp.7 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( ( 𝐽 CnP ( 𝐹 ‘ 𝑘 ) ) ‘ 𝐷 ) ) | |
| 7 | ptcnplem.1 | ⊢ Ⅎ 𝑘 𝜓 | |
| 8 | ptcnplem.2 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐺 Fn 𝐼 ) | |
| 9 | ptcnplem.3 | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑘 ∈ 𝐼 ) → ( 𝐺 ‘ 𝑘 ) ∈ ( 𝐹 ‘ 𝑘 ) ) | |
| 10 | ptcnplem.4 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑊 ∈ Fin ) | |
| 11 | ptcnplem.5 | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑊 ) ) → ( 𝐺 ‘ 𝑘 ) = ∪ ( 𝐹 ‘ 𝑘 ) ) | |
| 12 | ptcnplem.6 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) ∈ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ) | |
| 13 | inss2 | ⊢ ( 𝐼 ∩ 𝑊 ) ⊆ 𝑊 | |
| 14 | ssfi | ⊢ ( ( 𝑊 ∈ Fin ∧ ( 𝐼 ∩ 𝑊 ) ⊆ 𝑊 ) → ( 𝐼 ∩ 𝑊 ) ∈ Fin ) | |
| 15 | 10 13 14 | sylancl | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝐼 ∩ 𝑊 ) ∈ Fin ) |
| 16 | nfv | ⊢ Ⅎ 𝑘 𝜑 | |
| 17 | 16 7 | nfan | ⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝜓 ) |
| 18 | elinel1 | ⊢ ( 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) → 𝑘 ∈ 𝐼 ) | |
| 19 | 6 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑘 ∈ 𝐼 ) → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( ( 𝐽 CnP ( 𝐹 ‘ 𝑘 ) ) ‘ 𝐷 ) ) |
| 20 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐷 ∈ 𝑋 ) |
| 21 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) | |
| 22 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 23 | 4 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑘 ) ∈ Top ) |
| 24 | toptopon2 | ⊢ ( ( 𝐹 ‘ 𝑘 ) ∈ Top ↔ ( 𝐹 ‘ 𝑘 ) ∈ ( TopOn ‘ ∪ ( 𝐹 ‘ 𝑘 ) ) ) | |
| 25 | 23 24 | sylib | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑘 ) ∈ ( TopOn ‘ ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
| 26 | cnpf2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( TopOn ‘ ∪ ( 𝐹 ‘ 𝑘 ) ) ∧ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( ( 𝐽 CnP ( 𝐹 ‘ 𝑘 ) ) ‘ 𝐷 ) ) → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ ∪ ( 𝐹 ‘ 𝑘 ) ) | |
| 27 | 22 25 6 26 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 28 | eqid | ⊢ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) | |
| 29 | 28 | fmpt | ⊢ ( ∀ 𝑥 ∈ 𝑋 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ↔ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 30 | 27 29 | sylibr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ∀ 𝑥 ∈ 𝑋 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 31 | 30 | r19.21bi | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 32 | 28 | fvmpt2 | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) = 𝐴 ) |
| 33 | 21 31 32 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) = 𝐴 ) |
| 34 | 33 | an32s | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐼 ) → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) = 𝐴 ) |
| 35 | 34 | mpteq2dva | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ) = ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) |
| 36 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) | |
| 37 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐼 ∈ 𝑉 ) |
| 38 | 37 | mptexd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ∈ V ) |
| 39 | eqid | ⊢ ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) | |
| 40 | 39 | fvmpt2 | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ∈ V ) → ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝑥 ) = ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) |
| 41 | 36 38 40 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝑥 ) = ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) |
| 42 | 35 41 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ) = ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝑥 ) ) |
| 43 | 42 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ) = ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝑥 ) ) |
| 44 | 43 | adantr | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ∀ 𝑥 ∈ 𝑋 ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ) = ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝑥 ) ) |
| 45 | nfcv | ⊢ Ⅎ 𝑥 𝐼 | |
| 46 | nffvmpt1 | ⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) | |
| 47 | 45 46 | nfmpt | ⊢ Ⅎ 𝑥 ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) ) |
| 48 | nffvmpt1 | ⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) | |
| 49 | 47 48 | nfeq | ⊢ Ⅎ 𝑥 ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) ) = ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) |
| 50 | fveq2 | ⊢ ( 𝑥 = 𝐷 → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) ) | |
| 51 | 50 | mpteq2dv | ⊢ ( 𝑥 = 𝐷 → ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ) = ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) ) ) |
| 52 | fveq2 | ⊢ ( 𝑥 = 𝐷 → ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) ) | |
| 53 | 51 52 | eqeq12d | ⊢ ( 𝑥 = 𝐷 → ( ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ) = ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝑥 ) ↔ ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) ) = ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) ) ) |
| 54 | 49 53 | rspc | ⊢ ( 𝐷 ∈ 𝑋 → ( ∀ 𝑥 ∈ 𝑋 ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ) = ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝑥 ) → ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) ) = ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) ) ) |
| 55 | 20 44 54 | sylc | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) ) = ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) ) |
| 56 | 55 12 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) ) ∈ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ) |
| 57 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐼 ∈ 𝑉 ) |
| 58 | mptelixpg | ⊢ ( 𝐼 ∈ 𝑉 → ( ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) ) ∈ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ↔ ∀ 𝑘 ∈ 𝐼 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) ∈ ( 𝐺 ‘ 𝑘 ) ) ) | |
| 59 | 57 58 | syl | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) ) ∈ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ↔ ∀ 𝑘 ∈ 𝐼 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) ∈ ( 𝐺 ‘ 𝑘 ) ) ) |
| 60 | 56 59 | mpbid | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ∀ 𝑘 ∈ 𝐼 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) ∈ ( 𝐺 ‘ 𝑘 ) ) |
| 61 | 60 | r19.21bi | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑘 ∈ 𝐼 ) → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) ∈ ( 𝐺 ‘ 𝑘 ) ) |
| 62 | cnpimaex | ⊢ ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( ( 𝐽 CnP ( 𝐹 ‘ 𝑘 ) ) ‘ 𝐷 ) ∧ ( 𝐺 ‘ 𝑘 ) ∈ ( 𝐹 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) ∈ ( 𝐺 ‘ 𝑘 ) ) → ∃ 𝑢 ∈ 𝐽 ( 𝐷 ∈ 𝑢 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑢 ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) | |
| 63 | 19 9 61 62 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑘 ∈ 𝐼 ) → ∃ 𝑢 ∈ 𝐽 ( 𝐷 ∈ 𝑢 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑢 ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) |
| 64 | 18 63 | sylan2 | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ) → ∃ 𝑢 ∈ 𝐽 ( 𝐷 ∈ 𝑢 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑢 ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) |
| 65 | 64 | ex | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) → ∃ 𝑢 ∈ 𝐽 ( 𝐷 ∈ 𝑢 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑢 ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) |
| 66 | 17 65 | ralrimi | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ∃ 𝑢 ∈ 𝐽 ( 𝐷 ∈ 𝑢 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑢 ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) |
| 67 | eleq2 | ⊢ ( 𝑢 = ( 𝑓 ‘ 𝑘 ) → ( 𝐷 ∈ 𝑢 ↔ 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ) ) | |
| 68 | imaeq2 | ⊢ ( 𝑢 = ( 𝑓 ‘ 𝑘 ) → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑢 ) = ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ) | |
| 69 | 68 | sseq1d | ⊢ ( 𝑢 = ( 𝑓 ‘ 𝑘 ) → ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑢 ) ⊆ ( 𝐺 ‘ 𝑘 ) ↔ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) |
| 70 | 67 69 | anbi12d | ⊢ ( 𝑢 = ( 𝑓 ‘ 𝑘 ) → ( ( 𝐷 ∈ 𝑢 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑢 ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ↔ ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) |
| 71 | 70 | ac6sfi | ⊢ ( ( ( 𝐼 ∩ 𝑊 ) ∈ Fin ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ∃ 𝑢 ∈ 𝐽 ( 𝐷 ∈ 𝑢 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑢 ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) → ∃ 𝑓 ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) |
| 72 | 15 66 71 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ∃ 𝑓 ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) |
| 73 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 74 | toponuni | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) | |
| 75 | 73 74 | syl | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → 𝑋 = ∪ 𝐽 ) |
| 76 | 75 | ineq1d | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → ( 𝑋 ∩ ∩ ran 𝑓 ) = ( ∪ 𝐽 ∩ ∩ ran 𝑓 ) ) |
| 77 | topontop | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) | |
| 78 | 2 77 | syl | ⊢ ( 𝜑 → 𝐽 ∈ Top ) |
| 79 | 78 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → 𝐽 ∈ Top ) |
| 80 | frn | ⊢ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 → ran 𝑓 ⊆ 𝐽 ) | |
| 81 | 80 | ad2antrl | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → ran 𝑓 ⊆ 𝐽 ) |
| 82 | 15 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → ( 𝐼 ∩ 𝑊 ) ∈ Fin ) |
| 83 | ffn | ⊢ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 → 𝑓 Fn ( 𝐼 ∩ 𝑊 ) ) | |
| 84 | 83 | ad2antrl | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → 𝑓 Fn ( 𝐼 ∩ 𝑊 ) ) |
| 85 | dffn4 | ⊢ ( 𝑓 Fn ( 𝐼 ∩ 𝑊 ) ↔ 𝑓 : ( 𝐼 ∩ 𝑊 ) –onto→ ran 𝑓 ) | |
| 86 | 84 85 | sylib | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → 𝑓 : ( 𝐼 ∩ 𝑊 ) –onto→ ran 𝑓 ) |
| 87 | fofi | ⊢ ( ( ( 𝐼 ∩ 𝑊 ) ∈ Fin ∧ 𝑓 : ( 𝐼 ∩ 𝑊 ) –onto→ ran 𝑓 ) → ran 𝑓 ∈ Fin ) | |
| 88 | 82 86 87 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → ran 𝑓 ∈ Fin ) |
| 89 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 90 | 89 | rintopn | ⊢ ( ( 𝐽 ∈ Top ∧ ran 𝑓 ⊆ 𝐽 ∧ ran 𝑓 ∈ Fin ) → ( ∪ 𝐽 ∩ ∩ ran 𝑓 ) ∈ 𝐽 ) |
| 91 | 79 81 88 90 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → ( ∪ 𝐽 ∩ ∩ ran 𝑓 ) ∈ 𝐽 ) |
| 92 | 76 91 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → ( 𝑋 ∩ ∩ ran 𝑓 ) ∈ 𝐽 ) |
| 93 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → 𝐷 ∈ 𝑋 ) |
| 94 | simpl | ⊢ ( ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) → 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ) | |
| 95 | 94 | ralimi | ⊢ ( ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) → ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ) |
| 96 | 95 | ad2antll | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ) |
| 97 | eleq2 | ⊢ ( 𝑧 = ( 𝑓 ‘ 𝑘 ) → ( 𝐷 ∈ 𝑧 ↔ 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ) ) | |
| 98 | 97 | ralrn | ⊢ ( 𝑓 Fn ( 𝐼 ∩ 𝑊 ) → ( ∀ 𝑧 ∈ ran 𝑓 𝐷 ∈ 𝑧 ↔ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ) ) |
| 99 | 84 98 | syl | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → ( ∀ 𝑧 ∈ ran 𝑓 𝐷 ∈ 𝑧 ↔ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ) ) |
| 100 | 96 99 | mpbird | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → ∀ 𝑧 ∈ ran 𝑓 𝐷 ∈ 𝑧 ) |
| 101 | elrint | ⊢ ( 𝐷 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ↔ ( 𝐷 ∈ 𝑋 ∧ ∀ 𝑧 ∈ ran 𝑓 𝐷 ∈ 𝑧 ) ) | |
| 102 | 93 100 101 | sylanbrc | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → 𝐷 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ) |
| 103 | nfv | ⊢ Ⅎ 𝑘 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 | |
| 104 | 17 103 | nfan | ⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ) |
| 105 | funmpt | ⊢ Fun ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) | |
| 106 | simp-4l | ⊢ ( ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ) ∧ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ) ∧ 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ) → 𝜑 ) | |
| 107 | 106 2 | syl | ⊢ ( ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ) ∧ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ) ∧ 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 108 | simpllr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ) ∧ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ) ∧ 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ) → 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ) | |
| 109 | simplr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ) ∧ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ) ∧ 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ) → 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ) | |
| 110 | 108 109 | ffvelcdmd | ⊢ ( ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ) ∧ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ) ∧ 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ) → ( 𝑓 ‘ 𝑘 ) ∈ 𝐽 ) |
| 111 | toponss | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝑓 ‘ 𝑘 ) ∈ 𝐽 ) → ( 𝑓 ‘ 𝑘 ) ⊆ 𝑋 ) | |
| 112 | 107 110 111 | syl2anc | ⊢ ( ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ) ∧ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ) ∧ 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ) → ( 𝑓 ‘ 𝑘 ) ⊆ 𝑋 ) |
| 113 | 109 | elin1d | ⊢ ( ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ) ∧ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ) ∧ 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ) → 𝑘 ∈ 𝐼 ) |
| 114 | 106 113 30 | syl2anc | ⊢ ( ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ) ∧ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ) ∧ 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ) → ∀ 𝑥 ∈ 𝑋 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 115 | dmmptg | ⊢ ( ∀ 𝑥 ∈ 𝑋 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) → dom ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) = 𝑋 ) | |
| 116 | 114 115 | syl | ⊢ ( ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ) ∧ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ) ∧ 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ) → dom ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) = 𝑋 ) |
| 117 | 112 116 | sseqtrrd | ⊢ ( ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ) ∧ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ) ∧ 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ) → ( 𝑓 ‘ 𝑘 ) ⊆ dom ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) |
| 118 | funimass4 | ⊢ ( ( Fun ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∧ ( 𝑓 ‘ 𝑘 ) ⊆ dom ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) → ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ↔ ∀ 𝑡 ∈ ( 𝑓 ‘ 𝑘 ) ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑡 ) ∈ ( 𝐺 ‘ 𝑘 ) ) ) | |
| 119 | 105 117 118 | sylancr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ) ∧ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ) ∧ 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ) → ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ↔ ∀ 𝑡 ∈ ( 𝑓 ‘ 𝑘 ) ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑡 ) ∈ ( 𝐺 ‘ 𝑘 ) ) ) |
| 120 | nffvmpt1 | ⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑡 ) | |
| 121 | 120 | nfel1 | ⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑡 ) ∈ ( 𝐺 ‘ 𝑘 ) |
| 122 | nfv | ⊢ Ⅎ 𝑡 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ∈ ( 𝐺 ‘ 𝑘 ) | |
| 123 | fveq2 | ⊢ ( 𝑡 = 𝑥 → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑡 ) = ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ) | |
| 124 | 123 | eleq1d | ⊢ ( 𝑡 = 𝑥 → ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑡 ) ∈ ( 𝐺 ‘ 𝑘 ) ↔ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ∈ ( 𝐺 ‘ 𝑘 ) ) ) |
| 125 | 121 122 124 | cbvralw | ⊢ ( ∀ 𝑡 ∈ ( 𝑓 ‘ 𝑘 ) ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑡 ) ∈ ( 𝐺 ‘ 𝑘 ) ↔ ∀ 𝑥 ∈ ( 𝑓 ‘ 𝑘 ) ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ∈ ( 𝐺 ‘ 𝑘 ) ) |
| 126 | 119 125 | bitrdi | ⊢ ( ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ) ∧ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ) ∧ 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ) → ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ↔ ∀ 𝑥 ∈ ( 𝑓 ‘ 𝑘 ) ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ∈ ( 𝐺 ‘ 𝑘 ) ) ) |
| 127 | inss1 | ⊢ ( 𝑋 ∩ ∩ ran 𝑓 ) ⊆ 𝑋 | |
| 128 | ssralv | ⊢ ( ( 𝑋 ∩ ∩ ran 𝑓 ) ⊆ 𝑋 → ( ∀ 𝑥 ∈ 𝑋 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) → ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) ) | |
| 129 | 127 114 128 | mpsyl | ⊢ ( ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ) ∧ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ) ∧ 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ) → ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 130 | inss2 | ⊢ ( 𝑋 ∩ ∩ ran 𝑓 ) ⊆ ∩ ran 𝑓 | |
| 131 | 108 83 | syl | ⊢ ( ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ) ∧ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ) ∧ 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ) → 𝑓 Fn ( 𝐼 ∩ 𝑊 ) ) |
| 132 | fnfvelrn | ⊢ ( ( 𝑓 Fn ( 𝐼 ∩ 𝑊 ) ∧ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ) → ( 𝑓 ‘ 𝑘 ) ∈ ran 𝑓 ) | |
| 133 | 131 109 132 | syl2anc | ⊢ ( ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ) ∧ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ) ∧ 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ) → ( 𝑓 ‘ 𝑘 ) ∈ ran 𝑓 ) |
| 134 | intss1 | ⊢ ( ( 𝑓 ‘ 𝑘 ) ∈ ran 𝑓 → ∩ ran 𝑓 ⊆ ( 𝑓 ‘ 𝑘 ) ) | |
| 135 | 133 134 | syl | ⊢ ( ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ) ∧ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ) ∧ 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ) → ∩ ran 𝑓 ⊆ ( 𝑓 ‘ 𝑘 ) ) |
| 136 | 130 135 | sstrid | ⊢ ( ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ) ∧ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ) ∧ 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ) → ( 𝑋 ∩ ∩ ran 𝑓 ) ⊆ ( 𝑓 ‘ 𝑘 ) ) |
| 137 | ssralv | ⊢ ( ( 𝑋 ∩ ∩ ran 𝑓 ) ⊆ ( 𝑓 ‘ 𝑘 ) → ( ∀ 𝑥 ∈ ( 𝑓 ‘ 𝑘 ) ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ∈ ( 𝐺 ‘ 𝑘 ) → ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ∈ ( 𝐺 ‘ 𝑘 ) ) ) | |
| 138 | 136 137 | syl | ⊢ ( ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ) ∧ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ) ∧ 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ) → ( ∀ 𝑥 ∈ ( 𝑓 ‘ 𝑘 ) ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ∈ ( 𝐺 ‘ 𝑘 ) → ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ∈ ( 𝐺 ‘ 𝑘 ) ) ) |
| 139 | r19.26 | ⊢ ( ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ( 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ∈ ( 𝐺 ‘ 𝑘 ) ) ↔ ( ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ∧ ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ∈ ( 𝐺 ‘ 𝑘 ) ) ) | |
| 140 | elinel1 | ⊢ ( 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) → 𝑥 ∈ 𝑋 ) | |
| 141 | 140 32 | sylan | ⊢ ( ( 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ∧ 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) = 𝐴 ) |
| 142 | 141 | eleq1d | ⊢ ( ( 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ∧ 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) → ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ∈ ( 𝐺 ‘ 𝑘 ) ↔ 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ) ) |
| 143 | 142 | biimpd | ⊢ ( ( 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ∧ 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) → ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ∈ ( 𝐺 ‘ 𝑘 ) → 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ) ) |
| 144 | 143 | expimpd | ⊢ ( 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) → ( ( 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ∈ ( 𝐺 ‘ 𝑘 ) ) → 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ) ) |
| 145 | 144 | ralimia | ⊢ ( ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ( 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ∈ ( 𝐺 ‘ 𝑘 ) ) → ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ) |
| 146 | 139 145 | sylbir | ⊢ ( ( ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ∧ ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ∈ ( 𝐺 ‘ 𝑘 ) ) → ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ) |
| 147 | 129 138 146 | syl6an | ⊢ ( ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ) ∧ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ) ∧ 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ) → ( ∀ 𝑥 ∈ ( 𝑓 ‘ 𝑘 ) ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ∈ ( 𝐺 ‘ 𝑘 ) → ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ) ) |
| 148 | 126 147 | sylbid | ⊢ ( ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ) ∧ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ) ∧ 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ) → ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) → ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ) ) |
| 149 | 148 | expimpd | ⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ) ∧ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ) → ( ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) → ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ) ) |
| 150 | 104 149 | ralimdaa | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ) → ( ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) → ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ) ) |
| 151 | 150 | impr | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ) |
| 152 | simpl | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜑 ) | |
| 153 | eldifi | ⊢ ( 𝑘 ∈ ( 𝐼 ∖ 𝑊 ) → 𝑘 ∈ 𝐼 ) | |
| 154 | 140 31 | sylan2 | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ) → 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 155 | 154 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 156 | 152 153 155 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑊 ) ) → ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 157 | eleq2 | ⊢ ( ( 𝐺 ‘ 𝑘 ) = ∪ ( 𝐹 ‘ 𝑘 ) → ( 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ↔ 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) ) | |
| 158 | 157 | ralbidv | ⊢ ( ( 𝐺 ‘ 𝑘 ) = ∪ ( 𝐹 ‘ 𝑘 ) → ( ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ↔ ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
| 159 | 11 158 | syl | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑊 ) ) → ( ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ↔ ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
| 160 | 156 159 | mpbird | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑊 ) ) → ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ) |
| 161 | 160 | ex | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑘 ∈ ( 𝐼 ∖ 𝑊 ) → ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ) ) |
| 162 | 17 161 | ralrimi | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ∀ 𝑘 ∈ ( 𝐼 ∖ 𝑊 ) ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ) |
| 163 | 162 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → ∀ 𝑘 ∈ ( 𝐼 ∖ 𝑊 ) ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ) |
| 164 | inundif | ⊢ ( ( 𝐼 ∩ 𝑊 ) ∪ ( 𝐼 ∖ 𝑊 ) ) = 𝐼 | |
| 165 | 164 | raleqi | ⊢ ( ∀ 𝑘 ∈ ( ( 𝐼 ∩ 𝑊 ) ∪ ( 𝐼 ∖ 𝑊 ) ) ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ↔ ∀ 𝑘 ∈ 𝐼 ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ) |
| 166 | ralunb | ⊢ ( ∀ 𝑘 ∈ ( ( 𝐼 ∩ 𝑊 ) ∪ ( 𝐼 ∖ 𝑊 ) ) ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ↔ ( ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ∧ ∀ 𝑘 ∈ ( 𝐼 ∖ 𝑊 ) ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ) ) | |
| 167 | 165 166 | bitr3i | ⊢ ( ∀ 𝑘 ∈ 𝐼 ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ↔ ( ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ∧ ∀ 𝑘 ∈ ( 𝐼 ∖ 𝑊 ) ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ) ) |
| 168 | 151 163 167 | sylanbrc | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → ∀ 𝑘 ∈ 𝐼 ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ) |
| 169 | ralcom | ⊢ ( ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ∀ 𝑘 ∈ 𝐼 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ↔ ∀ 𝑘 ∈ 𝐼 ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ) | |
| 170 | 168 169 | sylibr | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ∀ 𝑘 ∈ 𝐼 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ) |
| 171 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → 𝐼 ∈ 𝑉 ) |
| 172 | nffvmpt1 | ⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝑡 ) | |
| 173 | 172 | nfel1 | ⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝑡 ) ∈ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) |
| 174 | nfv | ⊢ Ⅎ 𝑡 ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝑥 ) ∈ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) | |
| 175 | fveq2 | ⊢ ( 𝑡 = 𝑥 → ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝑡 ) = ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝑥 ) ) | |
| 176 | 175 | eleq1d | ⊢ ( 𝑡 = 𝑥 → ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝑡 ) ∈ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ↔ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝑥 ) ∈ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ) ) |
| 177 | 173 174 176 | cbvralw | ⊢ ( ∀ 𝑡 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝑡 ) ∈ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ↔ ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝑥 ) ∈ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ) |
| 178 | mptexg | ⊢ ( 𝐼 ∈ 𝑉 → ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ∈ V ) | |
| 179 | 140 178 40 | syl2anr | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ) → ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝑥 ) = ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) |
| 180 | 179 | eleq1d | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ) → ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝑥 ) ∈ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ↔ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ∈ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ) ) |
| 181 | mptelixpg | ⊢ ( 𝐼 ∈ 𝑉 → ( ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ∈ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ↔ ∀ 𝑘 ∈ 𝐼 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ) ) | |
| 182 | 181 | adantr | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ) → ( ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ∈ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ↔ ∀ 𝑘 ∈ 𝐼 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ) ) |
| 183 | 180 182 | bitrd | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ) → ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝑥 ) ∈ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ↔ ∀ 𝑘 ∈ 𝐼 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ) ) |
| 184 | 183 | ralbidva | ⊢ ( 𝐼 ∈ 𝑉 → ( ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝑥 ) ∈ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ↔ ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ∀ 𝑘 ∈ 𝐼 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ) ) |
| 185 | 177 184 | bitrid | ⊢ ( 𝐼 ∈ 𝑉 → ( ∀ 𝑡 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝑡 ) ∈ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ↔ ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ∀ 𝑘 ∈ 𝐼 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ) ) |
| 186 | 171 185 | syl | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → ( ∀ 𝑡 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝑡 ) ∈ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ↔ ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ∀ 𝑘 ∈ 𝐼 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ) ) |
| 187 | 170 186 | mpbird | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → ∀ 𝑡 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝑡 ) ∈ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ) |
| 188 | funmpt | ⊢ Fun ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) | |
| 189 | 3 | mptexd | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ∈ V ) |
| 190 | 189 | ralrimivw | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ∈ V ) |
| 191 | 190 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → ∀ 𝑥 ∈ 𝑋 ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ∈ V ) |
| 192 | dmmptg | ⊢ ( ∀ 𝑥 ∈ 𝑋 ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ∈ V → dom ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) = 𝑋 ) | |
| 193 | 191 192 | syl | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → dom ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) = 𝑋 ) |
| 194 | 127 193 | sseqtrrid | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → ( 𝑋 ∩ ∩ ran 𝑓 ) ⊆ dom ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ) |
| 195 | funimass4 | ⊢ ( ( Fun ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ∧ ( 𝑋 ∩ ∩ ran 𝑓 ) ⊆ dom ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ) → ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ ( 𝑋 ∩ ∩ ran 𝑓 ) ) ⊆ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ↔ ∀ 𝑡 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝑡 ) ∈ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ) ) | |
| 196 | 188 194 195 | sylancr | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ ( 𝑋 ∩ ∩ ran 𝑓 ) ) ⊆ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ↔ ∀ 𝑡 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝑡 ) ∈ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ) ) |
| 197 | 187 196 | mpbird | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ ( 𝑋 ∩ ∩ ran 𝑓 ) ) ⊆ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ) |
| 198 | eleq2 | ⊢ ( 𝑧 = ( 𝑋 ∩ ∩ ran 𝑓 ) → ( 𝐷 ∈ 𝑧 ↔ 𝐷 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ) ) | |
| 199 | imaeq2 | ⊢ ( 𝑧 = ( 𝑋 ∩ ∩ ran 𝑓 ) → ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ 𝑧 ) = ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ ( 𝑋 ∩ ∩ ran 𝑓 ) ) ) | |
| 200 | 199 | sseq1d | ⊢ ( 𝑧 = ( 𝑋 ∩ ∩ ran 𝑓 ) → ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ 𝑧 ) ⊆ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ↔ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ ( 𝑋 ∩ ∩ ran 𝑓 ) ) ⊆ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ) ) |
| 201 | 198 200 | anbi12d | ⊢ ( 𝑧 = ( 𝑋 ∩ ∩ ran 𝑓 ) → ( ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ 𝑧 ) ⊆ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ) ↔ ( 𝐷 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ ( 𝑋 ∩ ∩ ran 𝑓 ) ) ⊆ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ) ) ) |
| 202 | 201 | rspcev | ⊢ ( ( ( 𝑋 ∩ ∩ ran 𝑓 ) ∈ 𝐽 ∧ ( 𝐷 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ ( 𝑋 ∩ ∩ ran 𝑓 ) ) ⊆ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ) ) → ∃ 𝑧 ∈ 𝐽 ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ 𝑧 ) ⊆ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ) ) |
| 203 | 92 102 197 202 | syl12anc | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → ∃ 𝑧 ∈ 𝐽 ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ 𝑧 ) ⊆ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ) ) |
| 204 | 72 203 | exlimddv | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ∃ 𝑧 ∈ 𝐽 ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ 𝑧 ) ⊆ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ) ) |