This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of a function continuous at a point. (Contributed by FL, 31-Dec-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnpimaex | ⊢ ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐴 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ) → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | eqid | ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 3 | 1 2 | iscnp2 | ⊢ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ↔ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑃 ∈ ∪ 𝐽 ) ∧ ( 𝐹 : ∪ 𝐽 ⟶ ∪ 𝐾 ∧ ∀ 𝑦 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ) ) ) |
| 4 | 3 | simprbi | ⊢ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) → ( 𝐹 : ∪ 𝐽 ⟶ ∪ 𝐾 ∧ ∀ 𝑦 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ) ) |
| 5 | eleq2 | ⊢ ( 𝑦 = 𝐴 → ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 ↔ ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ) ) | |
| 6 | sseq2 | ⊢ ( 𝑦 = 𝐴 → ( ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ↔ ( 𝐹 “ 𝑥 ) ⊆ 𝐴 ) ) | |
| 7 | 6 | anbi2d | ⊢ ( 𝑦 = 𝐴 → ( ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ↔ ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝐴 ) ) ) |
| 8 | 7 | rexbidv | ⊢ ( 𝑦 = 𝐴 → ( ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ↔ ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝐴 ) ) ) |
| 9 | 5 8 | imbi12d | ⊢ ( 𝑦 = 𝐴 → ( ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ↔ ( ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝐴 ) ) ) ) |
| 10 | 9 | rspccv | ⊢ ( ∀ 𝑦 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) → ( 𝐴 ∈ 𝐾 → ( ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝐴 ) ) ) ) |
| 11 | 4 10 | simpl2im | ⊢ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) → ( 𝐴 ∈ 𝐾 → ( ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝐴 ) ) ) ) |
| 12 | 11 | 3imp | ⊢ ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐴 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ) → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝐴 ) ) |