This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A continuous function at point P is a mapping. (Contributed by Mario Carneiro, 21-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnpf2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) → 𝐹 : 𝑋 ⟶ 𝑌 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | eqid | ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 3 | 1 2 | cnpf | ⊢ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) → 𝐹 : ∪ 𝐽 ⟶ ∪ 𝐾 ) |
| 4 | toponuni | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) | |
| 5 | 4 | feq2d | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝐹 : 𝑋 ⟶ 𝑌 ↔ 𝐹 : ∪ 𝐽 ⟶ 𝑌 ) ) |
| 6 | toponuni | ⊢ ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) → 𝑌 = ∪ 𝐾 ) | |
| 7 | 6 | feq3d | ⊢ ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) → ( 𝐹 : ∪ 𝐽 ⟶ 𝑌 ↔ 𝐹 : ∪ 𝐽 ⟶ ∪ 𝐾 ) ) |
| 8 | 5 7 | sylan9bb | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐹 : 𝑋 ⟶ 𝑌 ↔ 𝐹 : ∪ 𝐽 ⟶ ∪ 𝐾 ) ) |
| 9 | 3 8 | imbitrrid | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) → 𝐹 : 𝑋 ⟶ 𝑌 ) ) |
| 10 | 9 | 3impia | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) → 𝐹 : 𝑋 ⟶ 𝑌 ) |