This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If every projection of a function is continuous at D , then the function itself is continuous at D into the product topology. (Contributed by Mario Carneiro, 3-Feb-2015) (Revised by Mario Carneiro, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ptcnp.2 | ⊢ 𝐾 = ( ∏t ‘ 𝐹 ) | |
| ptcnp.3 | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | ||
| ptcnp.4 | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| ptcnp.5 | ⊢ ( 𝜑 → 𝐹 : 𝐼 ⟶ Top ) | ||
| ptcnp.6 | ⊢ ( 𝜑 → 𝐷 ∈ 𝑋 ) | ||
| ptcnp.7 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( ( 𝐽 CnP ( 𝐹 ‘ 𝑘 ) ) ‘ 𝐷 ) ) | ||
| Assertion | ptcnp | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ptcnp.2 | ⊢ 𝐾 = ( ∏t ‘ 𝐹 ) | |
| 2 | ptcnp.3 | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 3 | ptcnp.4 | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 4 | ptcnp.5 | ⊢ ( 𝜑 → 𝐹 : 𝐼 ⟶ Top ) | |
| 5 | ptcnp.6 | ⊢ ( 𝜑 → 𝐷 ∈ 𝑋 ) | |
| 6 | ptcnp.7 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( ( 𝐽 CnP ( 𝐹 ‘ 𝑘 ) ) ‘ 𝐷 ) ) | |
| 7 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 8 | 4 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑘 ) ∈ Top ) |
| 9 | toptopon2 | ⊢ ( ( 𝐹 ‘ 𝑘 ) ∈ Top ↔ ( 𝐹 ‘ 𝑘 ) ∈ ( TopOn ‘ ∪ ( 𝐹 ‘ 𝑘 ) ) ) | |
| 10 | 8 9 | sylib | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑘 ) ∈ ( TopOn ‘ ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
| 11 | cnpf2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( TopOn ‘ ∪ ( 𝐹 ‘ 𝑘 ) ) ∧ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( ( 𝐽 CnP ( 𝐹 ‘ 𝑘 ) ) ‘ 𝐷 ) ) → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ ∪ ( 𝐹 ‘ 𝑘 ) ) | |
| 12 | 7 10 6 11 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 13 | 12 | fvmptelcdm | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 14 | 13 | an32s | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐼 ) → 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 15 | 14 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ∀ 𝑘 ∈ 𝐼 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 16 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐼 ∈ 𝑉 ) |
| 17 | mptelixpg | ⊢ ( 𝐼 ∈ 𝑉 → ( ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ∈ X 𝑘 ∈ 𝐼 ∪ ( 𝐹 ‘ 𝑘 ) ↔ ∀ 𝑘 ∈ 𝐼 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) ) | |
| 18 | 16 17 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ∈ X 𝑘 ∈ 𝐼 ∪ ( 𝐹 ‘ 𝑘 ) ↔ ∀ 𝑘 ∈ 𝐼 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
| 19 | 15 18 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ∈ X 𝑘 ∈ 𝐼 ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 20 | 19 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) : 𝑋 ⟶ X 𝑘 ∈ 𝐼 ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 21 | df-3an | ⊢ ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ∧ ∃ 𝑤 ∈ Fin ∀ 𝑛 ∈ ( 𝐼 ∖ 𝑤 ) ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ) ↔ ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ) ∧ ∃ 𝑤 ∈ Fin ∀ 𝑛 ∈ ( 𝐼 ∖ 𝑤 ) ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ) ) | |
| 22 | nfv | ⊢ Ⅎ 𝑘 ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ) | |
| 23 | nfv | ⊢ Ⅎ 𝑘 ( 𝑤 ∈ Fin ∧ ∀ 𝑛 ∈ ( 𝐼 ∖ 𝑤 ) ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ) | |
| 24 | nfcv | ⊢ Ⅎ 𝑘 𝑋 | |
| 25 | nfmpt1 | ⊢ Ⅎ 𝑘 ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) | |
| 26 | 24 25 | nfmpt | ⊢ Ⅎ 𝑘 ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) |
| 27 | nfcv | ⊢ Ⅎ 𝑘 𝐷 | |
| 28 | 26 27 | nffv | ⊢ Ⅎ 𝑘 ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) |
| 29 | 28 | nfel1 | ⊢ Ⅎ 𝑘 ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) ∈ X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) |
| 30 | 23 29 | nfan | ⊢ Ⅎ 𝑘 ( ( 𝑤 ∈ Fin ∧ ∀ 𝑛 ∈ ( 𝐼 ∖ 𝑤 ) ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) ∈ X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ) |
| 31 | 22 30 | nfan | ⊢ Ⅎ 𝑘 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ) ∧ ( ( 𝑤 ∈ Fin ∧ ∀ 𝑛 ∈ ( 𝐼 ∖ 𝑤 ) ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) ∈ X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ) ) |
| 32 | simprll | ⊢ ( ( 𝜑 ∧ ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ) ∧ ( ( 𝑤 ∈ Fin ∧ ∀ 𝑛 ∈ ( 𝐼 ∖ 𝑤 ) ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) ∈ X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ) ) ) → 𝑔 Fn 𝐼 ) | |
| 33 | simprlr | ⊢ ( ( 𝜑 ∧ ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ) ∧ ( ( 𝑤 ∈ Fin ∧ ∀ 𝑛 ∈ ( 𝐼 ∖ 𝑤 ) ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) ∈ X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ) ) ) → ∀ 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ) | |
| 34 | fveq2 | ⊢ ( 𝑛 = 𝑘 → ( 𝑔 ‘ 𝑛 ) = ( 𝑔 ‘ 𝑘 ) ) | |
| 35 | fveq2 | ⊢ ( 𝑛 = 𝑘 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 36 | 34 35 | eleq12d | ⊢ ( 𝑛 = 𝑘 → ( ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ↔ ( 𝑔 ‘ 𝑘 ) ∈ ( 𝐹 ‘ 𝑘 ) ) ) |
| 37 | 36 | rspccva | ⊢ ( ( ∀ 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ∧ 𝑘 ∈ 𝐼 ) → ( 𝑔 ‘ 𝑘 ) ∈ ( 𝐹 ‘ 𝑘 ) ) |
| 38 | 33 37 | sylan | ⊢ ( ( ( 𝜑 ∧ ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ) ∧ ( ( 𝑤 ∈ Fin ∧ ∀ 𝑛 ∈ ( 𝐼 ∖ 𝑤 ) ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) ∈ X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ) ) ) ∧ 𝑘 ∈ 𝐼 ) → ( 𝑔 ‘ 𝑘 ) ∈ ( 𝐹 ‘ 𝑘 ) ) |
| 39 | simprrl | ⊢ ( ( 𝜑 ∧ ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ) ∧ ( ( 𝑤 ∈ Fin ∧ ∀ 𝑛 ∈ ( 𝐼 ∖ 𝑤 ) ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) ∈ X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ) ) ) → ( 𝑤 ∈ Fin ∧ ∀ 𝑛 ∈ ( 𝐼 ∖ 𝑤 ) ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ) ) | |
| 40 | 39 | simpld | ⊢ ( ( 𝜑 ∧ ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ) ∧ ( ( 𝑤 ∈ Fin ∧ ∀ 𝑛 ∈ ( 𝐼 ∖ 𝑤 ) ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) ∈ X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ) ) ) → 𝑤 ∈ Fin ) |
| 41 | 39 | simprd | ⊢ ( ( 𝜑 ∧ ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ) ∧ ( ( 𝑤 ∈ Fin ∧ ∀ 𝑛 ∈ ( 𝐼 ∖ 𝑤 ) ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) ∈ X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ) ) ) → ∀ 𝑛 ∈ ( 𝐼 ∖ 𝑤 ) ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ) |
| 42 | 35 | unieqd | ⊢ ( 𝑛 = 𝑘 → ∪ ( 𝐹 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 43 | 34 42 | eqeq12d | ⊢ ( 𝑛 = 𝑘 → ( ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ↔ ( 𝑔 ‘ 𝑘 ) = ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
| 44 | 43 | rspccva | ⊢ ( ( ∀ 𝑛 ∈ ( 𝐼 ∖ 𝑤 ) ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑤 ) ) → ( 𝑔 ‘ 𝑘 ) = ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 45 | 41 44 | sylan | ⊢ ( ( ( 𝜑 ∧ ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ) ∧ ( ( 𝑤 ∈ Fin ∧ ∀ 𝑛 ∈ ( 𝐼 ∖ 𝑤 ) ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) ∈ X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ) ) ) ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑤 ) ) → ( 𝑔 ‘ 𝑘 ) = ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 46 | simprrr | ⊢ ( ( 𝜑 ∧ ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ) ∧ ( ( 𝑤 ∈ Fin ∧ ∀ 𝑛 ∈ ( 𝐼 ∖ 𝑤 ) ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) ∈ X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ) ) ) → ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) ∈ X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ) | |
| 47 | 34 | cbvixpv | ⊢ X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) = X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) |
| 48 | 46 47 | eleqtrdi | ⊢ ( ( 𝜑 ∧ ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ) ∧ ( ( 𝑤 ∈ Fin ∧ ∀ 𝑛 ∈ ( 𝐼 ∖ 𝑤 ) ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) ∈ X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ) ) ) → ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) ∈ X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ) |
| 49 | 1 2 3 4 5 6 31 32 38 40 45 48 | ptcnplem | ⊢ ( ( 𝜑 ∧ ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ) ∧ ( ( 𝑤 ∈ Fin ∧ ∀ 𝑛 ∈ ( 𝐼 ∖ 𝑤 ) ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) ∈ X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ) ) ) → ∃ 𝑧 ∈ 𝐽 ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ 𝑧 ) ⊆ X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ) ) |
| 50 | 49 | anassrs | ⊢ ( ( ( 𝜑 ∧ ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ) ) ∧ ( ( 𝑤 ∈ Fin ∧ ∀ 𝑛 ∈ ( 𝐼 ∖ 𝑤 ) ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) ∈ X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ) ) → ∃ 𝑧 ∈ 𝐽 ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ 𝑧 ) ⊆ X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ) ) |
| 51 | 50 | expr | ⊢ ( ( ( 𝜑 ∧ ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ) ) ∧ ( 𝑤 ∈ Fin ∧ ∀ 𝑛 ∈ ( 𝐼 ∖ 𝑤 ) ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ) ) → ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) ∈ X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) → ∃ 𝑧 ∈ 𝐽 ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ 𝑧 ) ⊆ X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ) ) ) |
| 52 | 51 | rexlimdvaa | ⊢ ( ( 𝜑 ∧ ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ) ) → ( ∃ 𝑤 ∈ Fin ∀ 𝑛 ∈ ( 𝐼 ∖ 𝑤 ) ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) → ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) ∈ X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) → ∃ 𝑧 ∈ 𝐽 ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ 𝑧 ) ⊆ X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ) ) ) ) |
| 53 | 52 | impr | ⊢ ( ( 𝜑 ∧ ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ) ∧ ∃ 𝑤 ∈ Fin ∀ 𝑛 ∈ ( 𝐼 ∖ 𝑤 ) ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ) ) → ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) ∈ X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) → ∃ 𝑧 ∈ 𝐽 ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ 𝑧 ) ⊆ X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ) ) ) |
| 54 | 21 53 | sylan2b | ⊢ ( ( 𝜑 ∧ ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ∧ ∃ 𝑤 ∈ Fin ∀ 𝑛 ∈ ( 𝐼 ∖ 𝑤 ) ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ) ) → ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) ∈ X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) → ∃ 𝑧 ∈ 𝐽 ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ 𝑧 ) ⊆ X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ) ) ) |
| 55 | eleq2 | ⊢ ( 𝑓 = X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) → ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) ∈ 𝑓 ↔ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) ∈ X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ) ) | |
| 56 | 47 | eqeq2i | ⊢ ( 𝑓 = X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ↔ 𝑓 = X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ) |
| 57 | 56 | biimpi | ⊢ ( 𝑓 = X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) → 𝑓 = X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ) |
| 58 | 57 | sseq2d | ⊢ ( 𝑓 = X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) → ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ 𝑧 ) ⊆ 𝑓 ↔ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ 𝑧 ) ⊆ X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ) ) |
| 59 | 58 | anbi2d | ⊢ ( 𝑓 = X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) → ( ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ 𝑧 ) ⊆ 𝑓 ) ↔ ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ 𝑧 ) ⊆ X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ) ) ) |
| 60 | 59 | rexbidv | ⊢ ( 𝑓 = X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) → ( ∃ 𝑧 ∈ 𝐽 ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ 𝑧 ) ⊆ 𝑓 ) ↔ ∃ 𝑧 ∈ 𝐽 ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ 𝑧 ) ⊆ X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ) ) ) |
| 61 | 55 60 | imbi12d | ⊢ ( 𝑓 = X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) → ( ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) ∈ 𝑓 → ∃ 𝑧 ∈ 𝐽 ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ 𝑧 ) ⊆ 𝑓 ) ) ↔ ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) ∈ X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) → ∃ 𝑧 ∈ 𝐽 ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ 𝑧 ) ⊆ X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ) ) ) ) |
| 62 | 54 61 | syl5ibrcom | ⊢ ( ( 𝜑 ∧ ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ∧ ∃ 𝑤 ∈ Fin ∀ 𝑛 ∈ ( 𝐼 ∖ 𝑤 ) ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ) ) → ( 𝑓 = X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) → ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) ∈ 𝑓 → ∃ 𝑧 ∈ 𝐽 ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ 𝑧 ) ⊆ 𝑓 ) ) ) ) |
| 63 | 62 | expimpd | ⊢ ( 𝜑 → ( ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ∧ ∃ 𝑤 ∈ Fin ∀ 𝑛 ∈ ( 𝐼 ∖ 𝑤 ) ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑓 = X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ) → ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) ∈ 𝑓 → ∃ 𝑧 ∈ 𝐽 ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ 𝑧 ) ⊆ 𝑓 ) ) ) ) |
| 64 | 63 | exlimdv | ⊢ ( 𝜑 → ( ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ∧ ∃ 𝑤 ∈ Fin ∀ 𝑛 ∈ ( 𝐼 ∖ 𝑤 ) ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑓 = X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ) → ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) ∈ 𝑓 → ∃ 𝑧 ∈ 𝐽 ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ 𝑧 ) ⊆ 𝑓 ) ) ) ) |
| 65 | 64 | alrimiv | ⊢ ( 𝜑 → ∀ 𝑓 ( ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ∧ ∃ 𝑤 ∈ Fin ∀ 𝑛 ∈ ( 𝐼 ∖ 𝑤 ) ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑓 = X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ) → ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) ∈ 𝑓 → ∃ 𝑧 ∈ 𝐽 ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ 𝑧 ) ⊆ 𝑓 ) ) ) ) |
| 66 | eqeq1 | ⊢ ( 𝑎 = 𝑓 → ( 𝑎 = X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ↔ 𝑓 = X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ) ) | |
| 67 | 66 | anbi2d | ⊢ ( 𝑎 = 𝑓 → ( ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ∧ ∃ 𝑤 ∈ Fin ∀ 𝑛 ∈ ( 𝐼 ∖ 𝑤 ) ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑎 = X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ) ↔ ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ∧ ∃ 𝑤 ∈ Fin ∀ 𝑛 ∈ ( 𝐼 ∖ 𝑤 ) ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑓 = X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ) ) ) |
| 68 | 67 | exbidv | ⊢ ( 𝑎 = 𝑓 → ( ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ∧ ∃ 𝑤 ∈ Fin ∀ 𝑛 ∈ ( 𝐼 ∖ 𝑤 ) ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑎 = X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ) ↔ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ∧ ∃ 𝑤 ∈ Fin ∀ 𝑛 ∈ ( 𝐼 ∖ 𝑤 ) ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑓 = X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ) ) ) |
| 69 | 68 | ralab | ⊢ ( ∀ 𝑓 ∈ { 𝑎 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ∧ ∃ 𝑤 ∈ Fin ∀ 𝑛 ∈ ( 𝐼 ∖ 𝑤 ) ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑎 = X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ) } ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) ∈ 𝑓 → ∃ 𝑧 ∈ 𝐽 ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ 𝑧 ) ⊆ 𝑓 ) ) ↔ ∀ 𝑓 ( ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ∧ ∃ 𝑤 ∈ Fin ∀ 𝑛 ∈ ( 𝐼 ∖ 𝑤 ) ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑓 = X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ) → ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) ∈ 𝑓 → ∃ 𝑧 ∈ 𝐽 ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ 𝑧 ) ⊆ 𝑓 ) ) ) ) |
| 70 | 65 69 | sylibr | ⊢ ( 𝜑 → ∀ 𝑓 ∈ { 𝑎 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ∧ ∃ 𝑤 ∈ Fin ∀ 𝑛 ∈ ( 𝐼 ∖ 𝑤 ) ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑎 = X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ) } ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) ∈ 𝑓 → ∃ 𝑧 ∈ 𝐽 ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ 𝑧 ) ⊆ 𝑓 ) ) ) |
| 71 | 4 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn 𝐼 ) |
| 72 | eqid | ⊢ { 𝑎 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ∧ ∃ 𝑤 ∈ Fin ∀ 𝑛 ∈ ( 𝐼 ∖ 𝑤 ) ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑎 = X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ) } = { 𝑎 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ∧ ∃ 𝑤 ∈ Fin ∀ 𝑛 ∈ ( 𝐼 ∖ 𝑤 ) ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑎 = X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ) } | |
| 73 | 72 | ptval | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 Fn 𝐼 ) → ( ∏t ‘ 𝐹 ) = ( topGen ‘ { 𝑎 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ∧ ∃ 𝑤 ∈ Fin ∀ 𝑛 ∈ ( 𝐼 ∖ 𝑤 ) ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑎 = X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ) } ) ) |
| 74 | 3 71 73 | syl2anc | ⊢ ( 𝜑 → ( ∏t ‘ 𝐹 ) = ( topGen ‘ { 𝑎 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ∧ ∃ 𝑤 ∈ Fin ∀ 𝑛 ∈ ( 𝐼 ∖ 𝑤 ) ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑎 = X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ) } ) ) |
| 75 | 1 74 | eqtrid | ⊢ ( 𝜑 → 𝐾 = ( topGen ‘ { 𝑎 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ∧ ∃ 𝑤 ∈ Fin ∀ 𝑛 ∈ ( 𝐼 ∖ 𝑤 ) ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑎 = X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ) } ) ) |
| 76 | 4 | feqmptd | ⊢ ( 𝜑 → 𝐹 = ( 𝑘 ∈ 𝐼 ↦ ( 𝐹 ‘ 𝑘 ) ) ) |
| 77 | 76 | fveq2d | ⊢ ( 𝜑 → ( ∏t ‘ 𝐹 ) = ( ∏t ‘ ( 𝑘 ∈ 𝐼 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 78 | 1 77 | eqtrid | ⊢ ( 𝜑 → 𝐾 = ( ∏t ‘ ( 𝑘 ∈ 𝐼 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 79 | 10 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐼 ( 𝐹 ‘ 𝑘 ) ∈ ( TopOn ‘ ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
| 80 | eqid | ⊢ ( ∏t ‘ ( 𝑘 ∈ 𝐼 ↦ ( 𝐹 ‘ 𝑘 ) ) ) = ( ∏t ‘ ( 𝑘 ∈ 𝐼 ↦ ( 𝐹 ‘ 𝑘 ) ) ) | |
| 81 | 80 | pttopon | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝐹 ‘ 𝑘 ) ∈ ( TopOn ‘ ∪ ( 𝐹 ‘ 𝑘 ) ) ) → ( ∏t ‘ ( 𝑘 ∈ 𝐼 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ∈ ( TopOn ‘ X 𝑘 ∈ 𝐼 ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
| 82 | 3 79 81 | syl2anc | ⊢ ( 𝜑 → ( ∏t ‘ ( 𝑘 ∈ 𝐼 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ∈ ( TopOn ‘ X 𝑘 ∈ 𝐼 ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
| 83 | 78 82 | eqeltrd | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ X 𝑘 ∈ 𝐼 ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
| 84 | 2 75 83 5 | tgcnp | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐷 ) ↔ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) : 𝑋 ⟶ X 𝑘 ∈ 𝐼 ∪ ( 𝐹 ‘ 𝑘 ) ∧ ∀ 𝑓 ∈ { 𝑎 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ∧ ∃ 𝑤 ∈ Fin ∀ 𝑛 ∈ ( 𝐼 ∖ 𝑤 ) ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑎 = X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ) } ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) ∈ 𝑓 → ∃ 𝑧 ∈ 𝐽 ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ 𝑧 ) ⊆ 𝑓 ) ) ) ) ) |
| 85 | 20 70 84 | mpbir2and | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐷 ) ) |