This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity element of the ring of power series is a left identity. (Contributed by Mario Carneiro, 29-Dec-2014) (Proof shortened by AV, 8-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psrring.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| psrring.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| psrring.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| psr1cl.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | ||
| psr1cl.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| psr1cl.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| psr1cl.u | ⊢ 𝑈 = ( 𝑥 ∈ 𝐷 ↦ if ( 𝑥 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) | ||
| psr1cl.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | ||
| psrlidm.t | ⊢ · = ( .r ‘ 𝑆 ) | ||
| psrlidm.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| Assertion | psrlidm | ⊢ ( 𝜑 → ( 𝑈 · 𝑋 ) = 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrring.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| 2 | psrring.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 3 | psrring.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 4 | psr1cl.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| 5 | psr1cl.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 6 | psr1cl.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 7 | psr1cl.u | ⊢ 𝑈 = ( 𝑥 ∈ 𝐷 ↦ if ( 𝑥 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) | |
| 8 | psr1cl.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 9 | psrlidm.t | ⊢ · = ( .r ‘ 𝑆 ) | |
| 10 | psrlidm.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 11 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 12 | 1 2 3 4 5 6 7 8 | psr1cl | ⊢ ( 𝜑 → 𝑈 ∈ 𝐵 ) |
| 13 | 1 8 9 3 12 10 | psrmulcl | ⊢ ( 𝜑 → ( 𝑈 · 𝑋 ) ∈ 𝐵 ) |
| 14 | 1 11 4 8 13 | psrelbas | ⊢ ( 𝜑 → ( 𝑈 · 𝑋 ) : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 15 | 14 | ffnd | ⊢ ( 𝜑 → ( 𝑈 · 𝑋 ) Fn 𝐷 ) |
| 16 | 1 11 4 8 10 | psrelbas | ⊢ ( 𝜑 → 𝑋 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 17 | 16 | ffnd | ⊢ ( 𝜑 → 𝑋 Fn 𝐷 ) |
| 18 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 19 | 12 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → 𝑈 ∈ 𝐵 ) |
| 20 | 10 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → 𝑋 ∈ 𝐵 ) |
| 21 | simpr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → 𝑦 ∈ 𝐷 ) | |
| 22 | 1 8 18 9 4 19 20 21 | psrmulval | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( ( 𝑈 · 𝑋 ) ‘ 𝑦 ) = ( 𝑅 Σg ( 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ↦ ( ( 𝑈 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) ) ) ) |
| 23 | breq1 | ⊢ ( 𝑔 = ( 𝐼 × { 0 } ) → ( 𝑔 ∘r ≤ 𝑦 ↔ ( 𝐼 × { 0 } ) ∘r ≤ 𝑦 ) ) | |
| 24 | fconstmpt | ⊢ ( 𝐼 × { 0 } ) = ( 𝑥 ∈ 𝐼 ↦ 0 ) | |
| 25 | 4 | fczpsrbag | ⊢ ( 𝐼 ∈ 𝑉 → ( 𝑥 ∈ 𝐼 ↦ 0 ) ∈ 𝐷 ) |
| 26 | 2 25 | syl | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ 0 ) ∈ 𝐷 ) |
| 27 | 24 26 | eqeltrid | ⊢ ( 𝜑 → ( 𝐼 × { 0 } ) ∈ 𝐷 ) |
| 28 | 27 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( 𝐼 × { 0 } ) ∈ 𝐷 ) |
| 29 | 4 | psrbagf | ⊢ ( 𝑦 ∈ 𝐷 → 𝑦 : 𝐼 ⟶ ℕ0 ) |
| 30 | 29 | adantl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → 𝑦 : 𝐼 ⟶ ℕ0 ) |
| 31 | 30 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑦 ‘ 𝑥 ) ∈ ℕ0 ) |
| 32 | 31 | nn0ge0d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑥 ∈ 𝐼 ) → 0 ≤ ( 𝑦 ‘ 𝑥 ) ) |
| 33 | 32 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ∀ 𝑥 ∈ 𝐼 0 ≤ ( 𝑦 ‘ 𝑥 ) ) |
| 34 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 35 | 34 | fconst6 | ⊢ ( 𝐼 × { 0 } ) : 𝐼 ⟶ ℕ0 |
| 36 | ffn | ⊢ ( ( 𝐼 × { 0 } ) : 𝐼 ⟶ ℕ0 → ( 𝐼 × { 0 } ) Fn 𝐼 ) | |
| 37 | 35 36 | mp1i | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( 𝐼 × { 0 } ) Fn 𝐼 ) |
| 38 | 30 | ffnd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → 𝑦 Fn 𝐼 ) |
| 39 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → 𝐼 ∈ 𝑉 ) |
| 40 | inidm | ⊢ ( 𝐼 ∩ 𝐼 ) = 𝐼 | |
| 41 | 34 | a1i | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → 0 ∈ ℕ0 ) |
| 42 | fvconst2g | ⊢ ( ( 0 ∈ ℕ0 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝐼 × { 0 } ) ‘ 𝑥 ) = 0 ) | |
| 43 | 41 42 | sylan | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝐼 × { 0 } ) ‘ 𝑥 ) = 0 ) |
| 44 | eqidd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑦 ‘ 𝑥 ) = ( 𝑦 ‘ 𝑥 ) ) | |
| 45 | 37 38 39 39 40 43 44 | ofrfval | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( ( 𝐼 × { 0 } ) ∘r ≤ 𝑦 ↔ ∀ 𝑥 ∈ 𝐼 0 ≤ ( 𝑦 ‘ 𝑥 ) ) ) |
| 46 | 33 45 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( 𝐼 × { 0 } ) ∘r ≤ 𝑦 ) |
| 47 | 23 28 46 | elrabd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( 𝐼 × { 0 } ) ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ) |
| 48 | 47 | snssd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → { ( 𝐼 × { 0 } ) } ⊆ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ) |
| 49 | 48 | resmptd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( ( 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ↦ ( ( 𝑈 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) ) ↾ { ( 𝐼 × { 0 } ) } ) = ( 𝑧 ∈ { ( 𝐼 × { 0 } ) } ↦ ( ( 𝑈 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) ) ) |
| 50 | 49 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( 𝑅 Σg ( ( 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ↦ ( ( 𝑈 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) ) ↾ { ( 𝐼 × { 0 } ) } ) ) = ( 𝑅 Σg ( 𝑧 ∈ { ( 𝐼 × { 0 } ) } ↦ ( ( 𝑈 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) ) ) ) |
| 51 | ringcmn | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ CMnd ) | |
| 52 | 3 51 | syl | ⊢ ( 𝜑 → 𝑅 ∈ CMnd ) |
| 53 | 52 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → 𝑅 ∈ CMnd ) |
| 54 | ovex | ⊢ ( ℕ0 ↑m 𝐼 ) ∈ V | |
| 55 | 4 54 | rab2ex | ⊢ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ∈ V |
| 56 | 55 | a1i | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ∈ V ) |
| 57 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ) → 𝑅 ∈ Ring ) |
| 58 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ) → 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ) | |
| 59 | breq1 | ⊢ ( 𝑔 = 𝑧 → ( 𝑔 ∘r ≤ 𝑦 ↔ 𝑧 ∘r ≤ 𝑦 ) ) | |
| 60 | 59 | elrab | ⊢ ( 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ↔ ( 𝑧 ∈ 𝐷 ∧ 𝑧 ∘r ≤ 𝑦 ) ) |
| 61 | 58 60 | sylib | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ) → ( 𝑧 ∈ 𝐷 ∧ 𝑧 ∘r ≤ 𝑦 ) ) |
| 62 | 61 | simpld | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ) → 𝑧 ∈ 𝐷 ) |
| 63 | 1 11 4 8 19 | psrelbas | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → 𝑈 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 64 | 63 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ 𝐷 ) → ( 𝑈 ‘ 𝑧 ) ∈ ( Base ‘ 𝑅 ) ) |
| 65 | 62 64 | syldan | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ) → ( 𝑈 ‘ 𝑧 ) ∈ ( Base ‘ 𝑅 ) ) |
| 66 | 16 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ) → 𝑋 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 67 | 21 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ) → 𝑦 ∈ 𝐷 ) |
| 68 | 4 | psrbagf | ⊢ ( 𝑧 ∈ 𝐷 → 𝑧 : 𝐼 ⟶ ℕ0 ) |
| 69 | 62 68 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ) → 𝑧 : 𝐼 ⟶ ℕ0 ) |
| 70 | 61 | simprd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ) → 𝑧 ∘r ≤ 𝑦 ) |
| 71 | 4 | psrbagcon | ⊢ ( ( 𝑦 ∈ 𝐷 ∧ 𝑧 : 𝐼 ⟶ ℕ0 ∧ 𝑧 ∘r ≤ 𝑦 ) → ( ( 𝑦 ∘f − 𝑧 ) ∈ 𝐷 ∧ ( 𝑦 ∘f − 𝑧 ) ∘r ≤ 𝑦 ) ) |
| 72 | 67 69 70 71 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ) → ( ( 𝑦 ∘f − 𝑧 ) ∈ 𝐷 ∧ ( 𝑦 ∘f − 𝑧 ) ∘r ≤ 𝑦 ) ) |
| 73 | 72 | simpld | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ) → ( 𝑦 ∘f − 𝑧 ) ∈ 𝐷 ) |
| 74 | 66 73 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ) → ( 𝑋 ‘ ( 𝑦 ∘f − 𝑧 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 75 | 11 18 | ringcl | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ‘ 𝑧 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑋 ‘ ( 𝑦 ∘f − 𝑧 ) ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑈 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 76 | 57 65 74 75 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ) → ( ( 𝑈 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 77 | 76 | fmpttd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ↦ ( ( 𝑈 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) ) : { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ⟶ ( Base ‘ 𝑅 ) ) |
| 78 | eldifi | ⊢ ( 𝑧 ∈ ( { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ∖ { ( 𝐼 × { 0 } ) } ) → 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ) | |
| 79 | 78 61 | sylan2 | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ ( { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ∖ { ( 𝐼 × { 0 } ) } ) ) → ( 𝑧 ∈ 𝐷 ∧ 𝑧 ∘r ≤ 𝑦 ) ) |
| 80 | 79 | simpld | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ ( { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ∖ { ( 𝐼 × { 0 } ) } ) ) → 𝑧 ∈ 𝐷 ) |
| 81 | eqeq1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 = ( 𝐼 × { 0 } ) ↔ 𝑧 = ( 𝐼 × { 0 } ) ) ) | |
| 82 | 81 | ifbid | ⊢ ( 𝑥 = 𝑧 → if ( 𝑥 = ( 𝐼 × { 0 } ) , 1 , 0 ) = if ( 𝑧 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) |
| 83 | 6 | fvexi | ⊢ 1 ∈ V |
| 84 | 5 | fvexi | ⊢ 0 ∈ V |
| 85 | 83 84 | ifex | ⊢ if ( 𝑧 = ( 𝐼 × { 0 } ) , 1 , 0 ) ∈ V |
| 86 | 82 7 85 | fvmpt | ⊢ ( 𝑧 ∈ 𝐷 → ( 𝑈 ‘ 𝑧 ) = if ( 𝑧 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) |
| 87 | 80 86 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ ( { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ∖ { ( 𝐼 × { 0 } ) } ) ) → ( 𝑈 ‘ 𝑧 ) = if ( 𝑧 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) |
| 88 | eldifn | ⊢ ( 𝑧 ∈ ( { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ∖ { ( 𝐼 × { 0 } ) } ) → ¬ 𝑧 ∈ { ( 𝐼 × { 0 } ) } ) | |
| 89 | 88 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ ( { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ∖ { ( 𝐼 × { 0 } ) } ) ) → ¬ 𝑧 ∈ { ( 𝐼 × { 0 } ) } ) |
| 90 | velsn | ⊢ ( 𝑧 ∈ { ( 𝐼 × { 0 } ) } ↔ 𝑧 = ( 𝐼 × { 0 } ) ) | |
| 91 | 89 90 | sylnib | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ ( { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ∖ { ( 𝐼 × { 0 } ) } ) ) → ¬ 𝑧 = ( 𝐼 × { 0 } ) ) |
| 92 | 91 | iffalsed | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ ( { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ∖ { ( 𝐼 × { 0 } ) } ) ) → if ( 𝑧 = ( 𝐼 × { 0 } ) , 1 , 0 ) = 0 ) |
| 93 | 87 92 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ ( { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ∖ { ( 𝐼 × { 0 } ) } ) ) → ( 𝑈 ‘ 𝑧 ) = 0 ) |
| 94 | 93 | oveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ ( { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ∖ { ( 𝐼 × { 0 } ) } ) ) → ( ( 𝑈 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) = ( 0 ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) ) |
| 95 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ ( { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ∖ { ( 𝐼 × { 0 } ) } ) ) → 𝑅 ∈ Ring ) |
| 96 | 78 74 | sylan2 | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ ( { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ∖ { ( 𝐼 × { 0 } ) } ) ) → ( 𝑋 ‘ ( 𝑦 ∘f − 𝑧 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 97 | 11 18 5 | ringlz | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ‘ ( 𝑦 ∘f − 𝑧 ) ) ∈ ( Base ‘ 𝑅 ) ) → ( 0 ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) = 0 ) |
| 98 | 95 96 97 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ ( { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ∖ { ( 𝐼 × { 0 } ) } ) ) → ( 0 ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) = 0 ) |
| 99 | 94 98 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ ( { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ∖ { ( 𝐼 × { 0 } ) } ) ) → ( ( 𝑈 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) = 0 ) |
| 100 | 99 56 | suppss2 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( ( 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ↦ ( ( 𝑈 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) ) supp 0 ) ⊆ { ( 𝐼 × { 0 } ) } ) |
| 101 | 4 54 | rabex2 | ⊢ 𝐷 ∈ V |
| 102 | 101 | mptrabex | ⊢ ( 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ↦ ( ( 𝑈 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) ) ∈ V |
| 103 | 102 | a1i | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ↦ ( ( 𝑈 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) ) ∈ V ) |
| 104 | funmpt | ⊢ Fun ( 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ↦ ( ( 𝑈 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) ) | |
| 105 | 104 | a1i | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → Fun ( 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ↦ ( ( 𝑈 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) ) ) |
| 106 | 84 | a1i | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → 0 ∈ V ) |
| 107 | snfi | ⊢ { ( 𝐼 × { 0 } ) } ∈ Fin | |
| 108 | 107 | a1i | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → { ( 𝐼 × { 0 } ) } ∈ Fin ) |
| 109 | suppssfifsupp | ⊢ ( ( ( ( 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ↦ ( ( 𝑈 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) ) ∈ V ∧ Fun ( 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ↦ ( ( 𝑈 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) ) ∧ 0 ∈ V ) ∧ ( { ( 𝐼 × { 0 } ) } ∈ Fin ∧ ( ( 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ↦ ( ( 𝑈 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) ) supp 0 ) ⊆ { ( 𝐼 × { 0 } ) } ) ) → ( 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ↦ ( ( 𝑈 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) ) finSupp 0 ) | |
| 110 | 103 105 106 108 100 109 | syl32anc | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ↦ ( ( 𝑈 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) ) finSupp 0 ) |
| 111 | 11 5 53 56 77 100 110 | gsumres | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( 𝑅 Σg ( ( 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ↦ ( ( 𝑈 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) ) ↾ { ( 𝐼 × { 0 } ) } ) ) = ( 𝑅 Σg ( 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ↦ ( ( 𝑈 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) ) ) ) |
| 112 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → 𝑅 ∈ Ring ) |
| 113 | ringmnd | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Mnd ) | |
| 114 | 112 113 | syl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → 𝑅 ∈ Mnd ) |
| 115 | iftrue | ⊢ ( 𝑥 = ( 𝐼 × { 0 } ) → if ( 𝑥 = ( 𝐼 × { 0 } ) , 1 , 0 ) = 1 ) | |
| 116 | 115 7 83 | fvmpt | ⊢ ( ( 𝐼 × { 0 } ) ∈ 𝐷 → ( 𝑈 ‘ ( 𝐼 × { 0 } ) ) = 1 ) |
| 117 | 28 116 | syl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( 𝑈 ‘ ( 𝐼 × { 0 } ) ) = 1 ) |
| 118 | nn0cn | ⊢ ( 𝑧 ∈ ℕ0 → 𝑧 ∈ ℂ ) | |
| 119 | 118 | subid1d | ⊢ ( 𝑧 ∈ ℕ0 → ( 𝑧 − 0 ) = 𝑧 ) |
| 120 | 119 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ ℕ0 ) → ( 𝑧 − 0 ) = 𝑧 ) |
| 121 | 39 30 41 120 | caofid0r | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( 𝑦 ∘f − ( 𝐼 × { 0 } ) ) = 𝑦 ) |
| 122 | 121 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( 𝑋 ‘ ( 𝑦 ∘f − ( 𝐼 × { 0 } ) ) ) = ( 𝑋 ‘ 𝑦 ) ) |
| 123 | 117 122 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( ( 𝑈 ‘ ( 𝐼 × { 0 } ) ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑦 ∘f − ( 𝐼 × { 0 } ) ) ) ) = ( 1 ( .r ‘ 𝑅 ) ( 𝑋 ‘ 𝑦 ) ) ) |
| 124 | 16 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( 𝑋 ‘ 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) |
| 125 | 11 18 6 | ringlidm | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ‘ 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) → ( 1 ( .r ‘ 𝑅 ) ( 𝑋 ‘ 𝑦 ) ) = ( 𝑋 ‘ 𝑦 ) ) |
| 126 | 112 124 125 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( 1 ( .r ‘ 𝑅 ) ( 𝑋 ‘ 𝑦 ) ) = ( 𝑋 ‘ 𝑦 ) ) |
| 127 | 123 126 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( ( 𝑈 ‘ ( 𝐼 × { 0 } ) ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑦 ∘f − ( 𝐼 × { 0 } ) ) ) ) = ( 𝑋 ‘ 𝑦 ) ) |
| 128 | 127 124 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( ( 𝑈 ‘ ( 𝐼 × { 0 } ) ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑦 ∘f − ( 𝐼 × { 0 } ) ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 129 | fveq2 | ⊢ ( 𝑧 = ( 𝐼 × { 0 } ) → ( 𝑈 ‘ 𝑧 ) = ( 𝑈 ‘ ( 𝐼 × { 0 } ) ) ) | |
| 130 | oveq2 | ⊢ ( 𝑧 = ( 𝐼 × { 0 } ) → ( 𝑦 ∘f − 𝑧 ) = ( 𝑦 ∘f − ( 𝐼 × { 0 } ) ) ) | |
| 131 | 130 | fveq2d | ⊢ ( 𝑧 = ( 𝐼 × { 0 } ) → ( 𝑋 ‘ ( 𝑦 ∘f − 𝑧 ) ) = ( 𝑋 ‘ ( 𝑦 ∘f − ( 𝐼 × { 0 } ) ) ) ) |
| 132 | 129 131 | oveq12d | ⊢ ( 𝑧 = ( 𝐼 × { 0 } ) → ( ( 𝑈 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) = ( ( 𝑈 ‘ ( 𝐼 × { 0 } ) ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑦 ∘f − ( 𝐼 × { 0 } ) ) ) ) ) |
| 133 | 11 132 | gsumsn | ⊢ ( ( 𝑅 ∈ Mnd ∧ ( 𝐼 × { 0 } ) ∈ 𝐷 ∧ ( ( 𝑈 ‘ ( 𝐼 × { 0 } ) ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑦 ∘f − ( 𝐼 × { 0 } ) ) ) ) ∈ ( Base ‘ 𝑅 ) ) → ( 𝑅 Σg ( 𝑧 ∈ { ( 𝐼 × { 0 } ) } ↦ ( ( 𝑈 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) ) ) = ( ( 𝑈 ‘ ( 𝐼 × { 0 } ) ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑦 ∘f − ( 𝐼 × { 0 } ) ) ) ) ) |
| 134 | 114 28 128 133 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( 𝑅 Σg ( 𝑧 ∈ { ( 𝐼 × { 0 } ) } ↦ ( ( 𝑈 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) ) ) = ( ( 𝑈 ‘ ( 𝐼 × { 0 } ) ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑦 ∘f − ( 𝐼 × { 0 } ) ) ) ) ) |
| 135 | 50 111 134 | 3eqtr3d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( 𝑅 Σg ( 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ↦ ( ( 𝑈 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) ) ) = ( ( 𝑈 ‘ ( 𝐼 × { 0 } ) ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑦 ∘f − ( 𝐼 × { 0 } ) ) ) ) ) |
| 136 | 22 135 127 | 3eqtrd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( ( 𝑈 · 𝑋 ) ‘ 𝑦 ) = ( 𝑋 ‘ 𝑦 ) ) |
| 137 | 15 17 136 | eqfnfvd | ⊢ ( 𝜑 → ( 𝑈 · 𝑋 ) = 𝑋 ) |