This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity element of the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psrring.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| psrring.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| psrring.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| psr1cl.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | ||
| psr1cl.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| psr1cl.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| psr1cl.u | ⊢ 𝑈 = ( 𝑥 ∈ 𝐷 ↦ if ( 𝑥 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) | ||
| psr1cl.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | ||
| Assertion | psr1cl | ⊢ ( 𝜑 → 𝑈 ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrring.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| 2 | psrring.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 3 | psrring.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 4 | psr1cl.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| 5 | psr1cl.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 6 | psr1cl.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 7 | psr1cl.u | ⊢ 𝑈 = ( 𝑥 ∈ 𝐷 ↦ if ( 𝑥 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) | |
| 8 | psr1cl.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 9 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 10 | 9 6 | ringidcl | ⊢ ( 𝑅 ∈ Ring → 1 ∈ ( Base ‘ 𝑅 ) ) |
| 11 | 9 5 | ring0cl | ⊢ ( 𝑅 ∈ Ring → 0 ∈ ( Base ‘ 𝑅 ) ) |
| 12 | 10 11 | ifcld | ⊢ ( 𝑅 ∈ Ring → if ( 𝑥 = ( 𝐼 × { 0 } ) , 1 , 0 ) ∈ ( Base ‘ 𝑅 ) ) |
| 13 | 3 12 | syl | ⊢ ( 𝜑 → if ( 𝑥 = ( 𝐼 × { 0 } ) , 1 , 0 ) ∈ ( Base ‘ 𝑅 ) ) |
| 14 | 13 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → if ( 𝑥 = ( 𝐼 × { 0 } ) , 1 , 0 ) ∈ ( Base ‘ 𝑅 ) ) |
| 15 | 14 7 | fmptd | ⊢ ( 𝜑 → 𝑈 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 16 | fvex | ⊢ ( Base ‘ 𝑅 ) ∈ V | |
| 17 | ovex | ⊢ ( ℕ0 ↑m 𝐼 ) ∈ V | |
| 18 | 4 17 | rabex2 | ⊢ 𝐷 ∈ V |
| 19 | 16 18 | elmap | ⊢ ( 𝑈 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐷 ) ↔ 𝑈 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 20 | 15 19 | sylibr | ⊢ ( 𝜑 → 𝑈 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐷 ) ) |
| 21 | 1 9 4 8 2 | psrbas | ⊢ ( 𝜑 → 𝐵 = ( ( Base ‘ 𝑅 ) ↑m 𝐷 ) ) |
| 22 | 20 21 | eleqtrrd | ⊢ ( 𝜑 → 𝑈 ∈ 𝐵 ) |