This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The analogue of the statement " 0 <_ G <_ F implies 0 <_ F - G <_ F " for finite bags. (Contributed by Mario Carneiro, 29-Dec-2014) Remove a sethood antecedent. (Revised by SN, 5-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | psrbag.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| Assertion | psrbagcon | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) → ( ( 𝐹 ∘f − 𝐺 ) ∈ 𝐷 ∧ ( 𝐹 ∘f − 𝐺 ) ∘r ≤ 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrbag.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| 2 | 1 | psrbagf | ⊢ ( 𝐹 ∈ 𝐷 → 𝐹 : 𝐼 ⟶ ℕ0 ) |
| 3 | 2 | ffnd | ⊢ ( 𝐹 ∈ 𝐷 → 𝐹 Fn 𝐼 ) |
| 4 | 3 | 3ad2ant1 | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) → 𝐹 Fn 𝐼 ) |
| 5 | simp2 | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) → 𝐺 : 𝐼 ⟶ ℕ0 ) | |
| 6 | 5 | ffnd | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) → 𝐺 Fn 𝐼 ) |
| 7 | id | ⊢ ( 𝐹 ∈ 𝐷 → 𝐹 ∈ 𝐷 ) | |
| 8 | 7 3 | fndmexd | ⊢ ( 𝐹 ∈ 𝐷 → 𝐼 ∈ V ) |
| 9 | 8 | 3ad2ant1 | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) → 𝐼 ∈ V ) |
| 10 | inidm | ⊢ ( 𝐼 ∩ 𝐼 ) = 𝐼 | |
| 11 | 4 6 9 9 10 | offn | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) → ( 𝐹 ∘f − 𝐺 ) Fn 𝐼 ) |
| 12 | eqidd | ⊢ ( ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 13 | eqidd | ⊢ ( ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) | |
| 14 | 4 6 9 9 10 12 13 | ofval | ⊢ ( ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) |
| 15 | simp3 | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) → 𝐺 ∘r ≤ 𝐹 ) | |
| 16 | 6 4 9 9 10 13 12 | ofrfval | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) → ( 𝐺 ∘r ≤ 𝐹 ↔ ∀ 𝑥 ∈ 𝐼 ( 𝐺 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 17 | 15 16 | mpbid | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) → ∀ 𝑥 ∈ 𝐼 ( 𝐺 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 18 | 17 | r19.21bi | ⊢ ( ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝐺 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 19 | 5 | ffvelcdmda | ⊢ ( ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝐺 ‘ 𝑥 ) ∈ ℕ0 ) |
| 20 | 2 | 3ad2ant1 | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) → 𝐹 : 𝐼 ⟶ ℕ0 ) |
| 21 | 20 | ffvelcdmda | ⊢ ( ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℕ0 ) |
| 22 | nn0sub | ⊢ ( ( ( 𝐺 ‘ 𝑥 ) ∈ ℕ0 ∧ ( 𝐹 ‘ 𝑥 ) ∈ ℕ0 ) → ( ( 𝐺 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑥 ) ↔ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ∈ ℕ0 ) ) | |
| 23 | 19 21 22 | syl2anc | ⊢ ( ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝐺 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑥 ) ↔ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ∈ ℕ0 ) ) |
| 24 | 18 23 | mpbid | ⊢ ( ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝐹 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ∈ ℕ0 ) |
| 25 | 14 24 | eqeltrd | ⊢ ( ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝑥 ) ∈ ℕ0 ) |
| 26 | 25 | ralrimiva | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) → ∀ 𝑥 ∈ 𝐼 ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝑥 ) ∈ ℕ0 ) |
| 27 | ffnfv | ⊢ ( ( 𝐹 ∘f − 𝐺 ) : 𝐼 ⟶ ℕ0 ↔ ( ( 𝐹 ∘f − 𝐺 ) Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝑥 ) ∈ ℕ0 ) ) | |
| 28 | 11 26 27 | sylanbrc | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) → ( 𝐹 ∘f − 𝐺 ) : 𝐼 ⟶ ℕ0 ) |
| 29 | simp1 | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) → 𝐹 ∈ 𝐷 ) | |
| 30 | 1 | psrbag | ⊢ ( 𝐼 ∈ V → ( 𝐹 ∈ 𝐷 ↔ ( 𝐹 : 𝐼 ⟶ ℕ0 ∧ ( ◡ 𝐹 “ ℕ ) ∈ Fin ) ) ) |
| 31 | 9 30 | syl | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) → ( 𝐹 ∈ 𝐷 ↔ ( 𝐹 : 𝐼 ⟶ ℕ0 ∧ ( ◡ 𝐹 “ ℕ ) ∈ Fin ) ) ) |
| 32 | 29 31 | mpbid | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) → ( 𝐹 : 𝐼 ⟶ ℕ0 ∧ ( ◡ 𝐹 “ ℕ ) ∈ Fin ) ) |
| 33 | 32 | simprd | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) → ( ◡ 𝐹 “ ℕ ) ∈ Fin ) |
| 34 | 19 | nn0ge0d | ⊢ ( ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) ∧ 𝑥 ∈ 𝐼 ) → 0 ≤ ( 𝐺 ‘ 𝑥 ) ) |
| 35 | 21 | nn0red | ⊢ ( ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 36 | 19 | nn0red | ⊢ ( ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝐺 ‘ 𝑥 ) ∈ ℝ ) |
| 37 | 35 36 | subge02d | ⊢ ( ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) ∧ 𝑥 ∈ 𝐼 ) → ( 0 ≤ ( 𝐺 ‘ 𝑥 ) ↔ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 38 | 34 37 | mpbid | ⊢ ( ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝐹 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 39 | 38 | ralrimiva | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) → ∀ 𝑥 ∈ 𝐼 ( ( 𝐹 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 40 | 11 4 9 9 10 14 12 | ofrfval | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) → ( ( 𝐹 ∘f − 𝐺 ) ∘r ≤ 𝐹 ↔ ∀ 𝑥 ∈ 𝐼 ( ( 𝐹 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 41 | 39 40 | mpbird | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) → ( 𝐹 ∘f − 𝐺 ) ∘r ≤ 𝐹 ) |
| 42 | 1 | psrbaglesupp | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ ( 𝐹 ∘f − 𝐺 ) : 𝐼 ⟶ ℕ0 ∧ ( 𝐹 ∘f − 𝐺 ) ∘r ≤ 𝐹 ) → ( ◡ ( 𝐹 ∘f − 𝐺 ) “ ℕ ) ⊆ ( ◡ 𝐹 “ ℕ ) ) |
| 43 | 29 28 41 42 | syl3anc | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) → ( ◡ ( 𝐹 ∘f − 𝐺 ) “ ℕ ) ⊆ ( ◡ 𝐹 “ ℕ ) ) |
| 44 | 33 43 | ssfid | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) → ( ◡ ( 𝐹 ∘f − 𝐺 ) “ ℕ ) ∈ Fin ) |
| 45 | 1 | psrbag | ⊢ ( 𝐼 ∈ V → ( ( 𝐹 ∘f − 𝐺 ) ∈ 𝐷 ↔ ( ( 𝐹 ∘f − 𝐺 ) : 𝐼 ⟶ ℕ0 ∧ ( ◡ ( 𝐹 ∘f − 𝐺 ) “ ℕ ) ∈ Fin ) ) ) |
| 46 | 9 45 | syl | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) → ( ( 𝐹 ∘f − 𝐺 ) ∈ 𝐷 ↔ ( ( 𝐹 ∘f − 𝐺 ) : 𝐼 ⟶ ℕ0 ∧ ( ◡ ( 𝐹 ∘f − 𝐺 ) “ ℕ ) ∈ Fin ) ) ) |
| 47 | 28 44 46 | mpbir2and | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) → ( 𝐹 ∘f − 𝐺 ) ∈ 𝐷 ) |
| 48 | 47 41 | jca | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) → ( ( 𝐹 ∘f − 𝐺 ) ∈ 𝐷 ∧ ( 𝐹 ∘f − 𝐺 ) ∘r ≤ 𝐹 ) ) |