This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity element of the ring of power series is a right identity. (Contributed by Mario Carneiro, 29-Dec-2014) (Proof shortened by AV, 8-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psrring.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| psrring.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| psrring.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| psr1cl.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | ||
| psr1cl.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| psr1cl.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| psr1cl.u | ⊢ 𝑈 = ( 𝑥 ∈ 𝐷 ↦ if ( 𝑥 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) | ||
| psr1cl.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | ||
| psrlidm.t | ⊢ · = ( .r ‘ 𝑆 ) | ||
| psrlidm.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| Assertion | psrridm | ⊢ ( 𝜑 → ( 𝑋 · 𝑈 ) = 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrring.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| 2 | psrring.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 3 | psrring.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 4 | psr1cl.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| 5 | psr1cl.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 6 | psr1cl.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 7 | psr1cl.u | ⊢ 𝑈 = ( 𝑥 ∈ 𝐷 ↦ if ( 𝑥 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) | |
| 8 | psr1cl.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 9 | psrlidm.t | ⊢ · = ( .r ‘ 𝑆 ) | |
| 10 | psrlidm.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 11 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 12 | 1 2 3 4 5 6 7 8 | psr1cl | ⊢ ( 𝜑 → 𝑈 ∈ 𝐵 ) |
| 13 | 1 8 9 3 10 12 | psrmulcl | ⊢ ( 𝜑 → ( 𝑋 · 𝑈 ) ∈ 𝐵 ) |
| 14 | 1 11 4 8 13 | psrelbas | ⊢ ( 𝜑 → ( 𝑋 · 𝑈 ) : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 15 | 14 | ffnd | ⊢ ( 𝜑 → ( 𝑋 · 𝑈 ) Fn 𝐷 ) |
| 16 | 1 11 4 8 10 | psrelbas | ⊢ ( 𝜑 → 𝑋 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 17 | 16 | ffnd | ⊢ ( 𝜑 → 𝑋 Fn 𝐷 ) |
| 18 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 19 | 10 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → 𝑋 ∈ 𝐵 ) |
| 20 | 12 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → 𝑈 ∈ 𝐵 ) |
| 21 | simpr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → 𝑦 ∈ 𝐷 ) | |
| 22 | 1 8 18 9 4 19 20 21 | psrmulval | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( ( 𝑋 · 𝑈 ) ‘ 𝑦 ) = ( 𝑅 Σg ( 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ↦ ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑈 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) ) ) ) |
| 23 | breq1 | ⊢ ( 𝑔 = 𝑦 → ( 𝑔 ∘r ≤ 𝑦 ↔ 𝑦 ∘r ≤ 𝑦 ) ) | |
| 24 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → 𝐼 ∈ 𝑉 ) |
| 25 | 4 | psrbagf | ⊢ ( 𝑦 ∈ 𝐷 → 𝑦 : 𝐼 ⟶ ℕ0 ) |
| 26 | 25 | adantl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → 𝑦 : 𝐼 ⟶ ℕ0 ) |
| 27 | nn0re | ⊢ ( 𝑧 ∈ ℕ0 → 𝑧 ∈ ℝ ) | |
| 28 | 27 | leidd | ⊢ ( 𝑧 ∈ ℕ0 → 𝑧 ≤ 𝑧 ) |
| 29 | 28 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ ℕ0 ) → 𝑧 ≤ 𝑧 ) |
| 30 | 24 26 29 | caofref | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → 𝑦 ∘r ≤ 𝑦 ) |
| 31 | 23 21 30 | elrabd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → 𝑦 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ) |
| 32 | 31 | snssd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → { 𝑦 } ⊆ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ) |
| 33 | 32 | resmptd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( ( 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ↦ ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑈 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) ) ↾ { 𝑦 } ) = ( 𝑧 ∈ { 𝑦 } ↦ ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑈 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) ) ) |
| 34 | 33 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( 𝑅 Σg ( ( 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ↦ ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑈 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) ) ↾ { 𝑦 } ) ) = ( 𝑅 Σg ( 𝑧 ∈ { 𝑦 } ↦ ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑈 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) ) ) ) |
| 35 | ringcmn | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ CMnd ) | |
| 36 | 3 35 | syl | ⊢ ( 𝜑 → 𝑅 ∈ CMnd ) |
| 37 | 36 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → 𝑅 ∈ CMnd ) |
| 38 | ovex | ⊢ ( ℕ0 ↑m 𝐼 ) ∈ V | |
| 39 | 4 38 | rab2ex | ⊢ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ∈ V |
| 40 | 39 | a1i | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ∈ V ) |
| 41 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ) → 𝑅 ∈ Ring ) |
| 42 | 16 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ) → 𝑋 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 43 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ) → 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ) | |
| 44 | breq1 | ⊢ ( 𝑔 = 𝑧 → ( 𝑔 ∘r ≤ 𝑦 ↔ 𝑧 ∘r ≤ 𝑦 ) ) | |
| 45 | 44 | elrab | ⊢ ( 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ↔ ( 𝑧 ∈ 𝐷 ∧ 𝑧 ∘r ≤ 𝑦 ) ) |
| 46 | 43 45 | sylib | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ) → ( 𝑧 ∈ 𝐷 ∧ 𝑧 ∘r ≤ 𝑦 ) ) |
| 47 | 46 | simpld | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ) → 𝑧 ∈ 𝐷 ) |
| 48 | 42 47 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ) → ( 𝑋 ‘ 𝑧 ) ∈ ( Base ‘ 𝑅 ) ) |
| 49 | 1 11 4 8 20 | psrelbas | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → 𝑈 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 50 | 49 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ) → 𝑈 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 51 | 21 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ) → 𝑦 ∈ 𝐷 ) |
| 52 | 4 | psrbagf | ⊢ ( 𝑧 ∈ 𝐷 → 𝑧 : 𝐼 ⟶ ℕ0 ) |
| 53 | 47 52 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ) → 𝑧 : 𝐼 ⟶ ℕ0 ) |
| 54 | 46 | simprd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ) → 𝑧 ∘r ≤ 𝑦 ) |
| 55 | 4 | psrbagcon | ⊢ ( ( 𝑦 ∈ 𝐷 ∧ 𝑧 : 𝐼 ⟶ ℕ0 ∧ 𝑧 ∘r ≤ 𝑦 ) → ( ( 𝑦 ∘f − 𝑧 ) ∈ 𝐷 ∧ ( 𝑦 ∘f − 𝑧 ) ∘r ≤ 𝑦 ) ) |
| 56 | 51 53 54 55 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ) → ( ( 𝑦 ∘f − 𝑧 ) ∈ 𝐷 ∧ ( 𝑦 ∘f − 𝑧 ) ∘r ≤ 𝑦 ) ) |
| 57 | 56 | simpld | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ) → ( 𝑦 ∘f − 𝑧 ) ∈ 𝐷 ) |
| 58 | 50 57 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ) → ( 𝑈 ‘ ( 𝑦 ∘f − 𝑧 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 59 | 11 18 | ringcl | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ‘ 𝑧 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑈 ‘ ( 𝑦 ∘f − 𝑧 ) ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑈 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 60 | 41 48 58 59 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ) → ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑈 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 61 | 60 | fmpttd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ↦ ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑈 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) ) : { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ⟶ ( Base ‘ 𝑅 ) ) |
| 62 | eldifi | ⊢ ( 𝑧 ∈ ( { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ∖ { 𝑦 } ) → 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ) | |
| 63 | 62 57 | sylan2 | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ ( { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ∖ { 𝑦 } ) ) → ( 𝑦 ∘f − 𝑧 ) ∈ 𝐷 ) |
| 64 | eqeq1 | ⊢ ( 𝑥 = ( 𝑦 ∘f − 𝑧 ) → ( 𝑥 = ( 𝐼 × { 0 } ) ↔ ( 𝑦 ∘f − 𝑧 ) = ( 𝐼 × { 0 } ) ) ) | |
| 65 | 64 | ifbid | ⊢ ( 𝑥 = ( 𝑦 ∘f − 𝑧 ) → if ( 𝑥 = ( 𝐼 × { 0 } ) , 1 , 0 ) = if ( ( 𝑦 ∘f − 𝑧 ) = ( 𝐼 × { 0 } ) , 1 , 0 ) ) |
| 66 | 6 | fvexi | ⊢ 1 ∈ V |
| 67 | 5 | fvexi | ⊢ 0 ∈ V |
| 68 | 66 67 | ifex | ⊢ if ( ( 𝑦 ∘f − 𝑧 ) = ( 𝐼 × { 0 } ) , 1 , 0 ) ∈ V |
| 69 | 65 7 68 | fvmpt | ⊢ ( ( 𝑦 ∘f − 𝑧 ) ∈ 𝐷 → ( 𝑈 ‘ ( 𝑦 ∘f − 𝑧 ) ) = if ( ( 𝑦 ∘f − 𝑧 ) = ( 𝐼 × { 0 } ) , 1 , 0 ) ) |
| 70 | 63 69 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ ( { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ∖ { 𝑦 } ) ) → ( 𝑈 ‘ ( 𝑦 ∘f − 𝑧 ) ) = if ( ( 𝑦 ∘f − 𝑧 ) = ( 𝐼 × { 0 } ) , 1 , 0 ) ) |
| 71 | eldifsni | ⊢ ( 𝑧 ∈ ( { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ∖ { 𝑦 } ) → 𝑧 ≠ 𝑦 ) | |
| 72 | 71 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ ( { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ∖ { 𝑦 } ) ) → 𝑧 ≠ 𝑦 ) |
| 73 | 72 | necomd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ ( { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ∖ { 𝑦 } ) ) → 𝑦 ≠ 𝑧 ) |
| 74 | 24 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ) → 𝐼 ∈ 𝑉 ) |
| 75 | nn0sscn | ⊢ ℕ0 ⊆ ℂ | |
| 76 | fss | ⊢ ( ( 𝑦 : 𝐼 ⟶ ℕ0 ∧ ℕ0 ⊆ ℂ ) → 𝑦 : 𝐼 ⟶ ℂ ) | |
| 77 | 26 75 76 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → 𝑦 : 𝐼 ⟶ ℂ ) |
| 78 | 77 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ) → 𝑦 : 𝐼 ⟶ ℂ ) |
| 79 | fss | ⊢ ( ( 𝑧 : 𝐼 ⟶ ℕ0 ∧ ℕ0 ⊆ ℂ ) → 𝑧 : 𝐼 ⟶ ℂ ) | |
| 80 | 53 75 79 | sylancl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ) → 𝑧 : 𝐼 ⟶ ℂ ) |
| 81 | ofsubeq0 | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑦 : 𝐼 ⟶ ℂ ∧ 𝑧 : 𝐼 ⟶ ℂ ) → ( ( 𝑦 ∘f − 𝑧 ) = ( 𝐼 × { 0 } ) ↔ 𝑦 = 𝑧 ) ) | |
| 82 | 74 78 80 81 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ) → ( ( 𝑦 ∘f − 𝑧 ) = ( 𝐼 × { 0 } ) ↔ 𝑦 = 𝑧 ) ) |
| 83 | 62 82 | sylan2 | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ ( { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ∖ { 𝑦 } ) ) → ( ( 𝑦 ∘f − 𝑧 ) = ( 𝐼 × { 0 } ) ↔ 𝑦 = 𝑧 ) ) |
| 84 | 83 | necon3bbid | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ ( { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ∖ { 𝑦 } ) ) → ( ¬ ( 𝑦 ∘f − 𝑧 ) = ( 𝐼 × { 0 } ) ↔ 𝑦 ≠ 𝑧 ) ) |
| 85 | 73 84 | mpbird | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ ( { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ∖ { 𝑦 } ) ) → ¬ ( 𝑦 ∘f − 𝑧 ) = ( 𝐼 × { 0 } ) ) |
| 86 | 85 | iffalsed | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ ( { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ∖ { 𝑦 } ) ) → if ( ( 𝑦 ∘f − 𝑧 ) = ( 𝐼 × { 0 } ) , 1 , 0 ) = 0 ) |
| 87 | 70 86 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ ( { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ∖ { 𝑦 } ) ) → ( 𝑈 ‘ ( 𝑦 ∘f − 𝑧 ) ) = 0 ) |
| 88 | 87 | oveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ ( { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ∖ { 𝑦 } ) ) → ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑈 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) = ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) 0 ) ) |
| 89 | 11 18 5 | ringrz | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ‘ 𝑧 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) 0 ) = 0 ) |
| 90 | 41 48 89 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ) → ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) 0 ) = 0 ) |
| 91 | 62 90 | sylan2 | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ ( { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ∖ { 𝑦 } ) ) → ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) 0 ) = 0 ) |
| 92 | 88 91 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ ( { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ∖ { 𝑦 } ) ) → ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑈 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) = 0 ) |
| 93 | 92 40 | suppss2 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( ( 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ↦ ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑈 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) ) supp 0 ) ⊆ { 𝑦 } ) |
| 94 | 40 | mptexd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ↦ ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑈 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) ) ∈ V ) |
| 95 | funmpt | ⊢ Fun ( 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ↦ ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑈 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) ) | |
| 96 | 95 | a1i | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → Fun ( 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ↦ ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑈 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) ) ) |
| 97 | 67 | a1i | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → 0 ∈ V ) |
| 98 | snfi | ⊢ { 𝑦 } ∈ Fin | |
| 99 | 98 | a1i | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → { 𝑦 } ∈ Fin ) |
| 100 | suppssfifsupp | ⊢ ( ( ( ( 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ↦ ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑈 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) ) ∈ V ∧ Fun ( 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ↦ ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑈 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) ) ∧ 0 ∈ V ) ∧ ( { 𝑦 } ∈ Fin ∧ ( ( 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ↦ ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑈 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) ) supp 0 ) ⊆ { 𝑦 } ) ) → ( 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ↦ ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑈 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) ) finSupp 0 ) | |
| 101 | 94 96 97 99 93 100 | syl32anc | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ↦ ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑈 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) ) finSupp 0 ) |
| 102 | 11 5 37 40 61 93 101 | gsumres | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( 𝑅 Σg ( ( 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ↦ ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑈 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) ) ↾ { 𝑦 } ) ) = ( 𝑅 Σg ( 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ↦ ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑈 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) ) ) ) |
| 103 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → 𝑅 ∈ Ring ) |
| 104 | ringmnd | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Mnd ) | |
| 105 | 103 104 | syl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → 𝑅 ∈ Mnd ) |
| 106 | eqid | ⊢ 𝑦 = 𝑦 | |
| 107 | ofsubeq0 | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑦 : 𝐼 ⟶ ℂ ∧ 𝑦 : 𝐼 ⟶ ℂ ) → ( ( 𝑦 ∘f − 𝑦 ) = ( 𝐼 × { 0 } ) ↔ 𝑦 = 𝑦 ) ) | |
| 108 | 24 77 77 107 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( ( 𝑦 ∘f − 𝑦 ) = ( 𝐼 × { 0 } ) ↔ 𝑦 = 𝑦 ) ) |
| 109 | 106 108 | mpbiri | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( 𝑦 ∘f − 𝑦 ) = ( 𝐼 × { 0 } ) ) |
| 110 | 109 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( 𝑈 ‘ ( 𝑦 ∘f − 𝑦 ) ) = ( 𝑈 ‘ ( 𝐼 × { 0 } ) ) ) |
| 111 | fconstmpt | ⊢ ( 𝐼 × { 0 } ) = ( 𝑤 ∈ 𝐼 ↦ 0 ) | |
| 112 | 4 | fczpsrbag | ⊢ ( 𝐼 ∈ 𝑉 → ( 𝑤 ∈ 𝐼 ↦ 0 ) ∈ 𝐷 ) |
| 113 | 2 112 | syl | ⊢ ( 𝜑 → ( 𝑤 ∈ 𝐼 ↦ 0 ) ∈ 𝐷 ) |
| 114 | 111 113 | eqeltrid | ⊢ ( 𝜑 → ( 𝐼 × { 0 } ) ∈ 𝐷 ) |
| 115 | 114 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( 𝐼 × { 0 } ) ∈ 𝐷 ) |
| 116 | iftrue | ⊢ ( 𝑥 = ( 𝐼 × { 0 } ) → if ( 𝑥 = ( 𝐼 × { 0 } ) , 1 , 0 ) = 1 ) | |
| 117 | 116 7 66 | fvmpt | ⊢ ( ( 𝐼 × { 0 } ) ∈ 𝐷 → ( 𝑈 ‘ ( 𝐼 × { 0 } ) ) = 1 ) |
| 118 | 115 117 | syl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( 𝑈 ‘ ( 𝐼 × { 0 } ) ) = 1 ) |
| 119 | 110 118 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( 𝑈 ‘ ( 𝑦 ∘f − 𝑦 ) ) = 1 ) |
| 120 | 119 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( ( 𝑋 ‘ 𝑦 ) ( .r ‘ 𝑅 ) ( 𝑈 ‘ ( 𝑦 ∘f − 𝑦 ) ) ) = ( ( 𝑋 ‘ 𝑦 ) ( .r ‘ 𝑅 ) 1 ) ) |
| 121 | 16 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( 𝑋 ‘ 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) |
| 122 | 11 18 6 | ringridm | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ‘ 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑋 ‘ 𝑦 ) ( .r ‘ 𝑅 ) 1 ) = ( 𝑋 ‘ 𝑦 ) ) |
| 123 | 103 121 122 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( ( 𝑋 ‘ 𝑦 ) ( .r ‘ 𝑅 ) 1 ) = ( 𝑋 ‘ 𝑦 ) ) |
| 124 | 120 123 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( ( 𝑋 ‘ 𝑦 ) ( .r ‘ 𝑅 ) ( 𝑈 ‘ ( 𝑦 ∘f − 𝑦 ) ) ) = ( 𝑋 ‘ 𝑦 ) ) |
| 125 | 124 121 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( ( 𝑋 ‘ 𝑦 ) ( .r ‘ 𝑅 ) ( 𝑈 ‘ ( 𝑦 ∘f − 𝑦 ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 126 | fveq2 | ⊢ ( 𝑧 = 𝑦 → ( 𝑋 ‘ 𝑧 ) = ( 𝑋 ‘ 𝑦 ) ) | |
| 127 | oveq2 | ⊢ ( 𝑧 = 𝑦 → ( 𝑦 ∘f − 𝑧 ) = ( 𝑦 ∘f − 𝑦 ) ) | |
| 128 | 127 | fveq2d | ⊢ ( 𝑧 = 𝑦 → ( 𝑈 ‘ ( 𝑦 ∘f − 𝑧 ) ) = ( 𝑈 ‘ ( 𝑦 ∘f − 𝑦 ) ) ) |
| 129 | 126 128 | oveq12d | ⊢ ( 𝑧 = 𝑦 → ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑈 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) = ( ( 𝑋 ‘ 𝑦 ) ( .r ‘ 𝑅 ) ( 𝑈 ‘ ( 𝑦 ∘f − 𝑦 ) ) ) ) |
| 130 | 11 129 | gsumsn | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝑦 ∈ 𝐷 ∧ ( ( 𝑋 ‘ 𝑦 ) ( .r ‘ 𝑅 ) ( 𝑈 ‘ ( 𝑦 ∘f − 𝑦 ) ) ) ∈ ( Base ‘ 𝑅 ) ) → ( 𝑅 Σg ( 𝑧 ∈ { 𝑦 } ↦ ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑈 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) ) ) = ( ( 𝑋 ‘ 𝑦 ) ( .r ‘ 𝑅 ) ( 𝑈 ‘ ( 𝑦 ∘f − 𝑦 ) ) ) ) |
| 131 | 105 21 125 130 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( 𝑅 Σg ( 𝑧 ∈ { 𝑦 } ↦ ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑈 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) ) ) = ( ( 𝑋 ‘ 𝑦 ) ( .r ‘ 𝑅 ) ( 𝑈 ‘ ( 𝑦 ∘f − 𝑦 ) ) ) ) |
| 132 | 34 102 131 | 3eqtr3d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( 𝑅 Σg ( 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ↦ ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑈 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) ) ) = ( ( 𝑋 ‘ 𝑦 ) ( .r ‘ 𝑅 ) ( 𝑈 ‘ ( 𝑦 ∘f − 𝑦 ) ) ) ) |
| 133 | 22 132 124 | 3eqtrd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( ( 𝑋 · 𝑈 ) ‘ 𝑦 ) = ( 𝑋 ‘ 𝑦 ) ) |
| 134 | 15 17 133 | eqfnfvd | ⊢ ( 𝜑 → ( 𝑋 · 𝑈 ) = 𝑋 ) |