This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: To invert a permutation represented as a sequence of transpositions, reverse the sequence. (Contributed by Stefan O'Rear, 27-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | symgtrinv.t | ⊢ 𝑇 = ran ( pmTrsp ‘ 𝐷 ) | |
| symgtrinv.g | ⊢ 𝐺 = ( SymGrp ‘ 𝐷 ) | ||
| symgtrinv.i | ⊢ 𝐼 = ( invg ‘ 𝐺 ) | ||
| Assertion | symgtrinv | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇 ) → ( 𝐼 ‘ ( 𝐺 Σg 𝑊 ) ) = ( 𝐺 Σg ( reverse ‘ 𝑊 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symgtrinv.t | ⊢ 𝑇 = ran ( pmTrsp ‘ 𝐷 ) | |
| 2 | symgtrinv.g | ⊢ 𝐺 = ( SymGrp ‘ 𝐷 ) | |
| 3 | symgtrinv.i | ⊢ 𝐼 = ( invg ‘ 𝐺 ) | |
| 4 | 2 | symggrp | ⊢ ( 𝐷 ∈ 𝑉 → 𝐺 ∈ Grp ) |
| 5 | eqid | ⊢ ( oppg ‘ 𝐺 ) = ( oppg ‘ 𝐺 ) | |
| 6 | 5 3 | invoppggim | ⊢ ( 𝐺 ∈ Grp → 𝐼 ∈ ( 𝐺 GrpIso ( oppg ‘ 𝐺 ) ) ) |
| 7 | gimghm | ⊢ ( 𝐼 ∈ ( 𝐺 GrpIso ( oppg ‘ 𝐺 ) ) → 𝐼 ∈ ( 𝐺 GrpHom ( oppg ‘ 𝐺 ) ) ) | |
| 8 | ghmmhm | ⊢ ( 𝐼 ∈ ( 𝐺 GrpHom ( oppg ‘ 𝐺 ) ) → 𝐼 ∈ ( 𝐺 MndHom ( oppg ‘ 𝐺 ) ) ) | |
| 9 | 4 6 7 8 | 4syl | ⊢ ( 𝐷 ∈ 𝑉 → 𝐼 ∈ ( 𝐺 MndHom ( oppg ‘ 𝐺 ) ) ) |
| 10 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 11 | 1 2 10 | symgtrf | ⊢ 𝑇 ⊆ ( Base ‘ 𝐺 ) |
| 12 | sswrd | ⊢ ( 𝑇 ⊆ ( Base ‘ 𝐺 ) → Word 𝑇 ⊆ Word ( Base ‘ 𝐺 ) ) | |
| 13 | 11 12 | ax-mp | ⊢ Word 𝑇 ⊆ Word ( Base ‘ 𝐺 ) |
| 14 | 13 | sseli | ⊢ ( 𝑊 ∈ Word 𝑇 → 𝑊 ∈ Word ( Base ‘ 𝐺 ) ) |
| 15 | 10 | gsumwmhm | ⊢ ( ( 𝐼 ∈ ( 𝐺 MndHom ( oppg ‘ 𝐺 ) ) ∧ 𝑊 ∈ Word ( Base ‘ 𝐺 ) ) → ( 𝐼 ‘ ( 𝐺 Σg 𝑊 ) ) = ( ( oppg ‘ 𝐺 ) Σg ( 𝐼 ∘ 𝑊 ) ) ) |
| 16 | 9 14 15 | syl2an | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇 ) → ( 𝐼 ‘ ( 𝐺 Σg 𝑊 ) ) = ( ( oppg ‘ 𝐺 ) Σg ( 𝐼 ∘ 𝑊 ) ) ) |
| 17 | 10 3 | grpinvf | ⊢ ( 𝐺 ∈ Grp → 𝐼 : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐺 ) ) |
| 18 | 4 17 | syl | ⊢ ( 𝐷 ∈ 𝑉 → 𝐼 : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐺 ) ) |
| 19 | wrdf | ⊢ ( 𝑊 ∈ Word 𝑇 → 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑇 ) | |
| 20 | 19 | adantl | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇 ) → 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑇 ) |
| 21 | fss | ⊢ ( ( 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑇 ∧ 𝑇 ⊆ ( Base ‘ 𝐺 ) ) → 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ ( Base ‘ 𝐺 ) ) | |
| 22 | 20 11 21 | sylancl | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇 ) → 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ ( Base ‘ 𝐺 ) ) |
| 23 | fco | ⊢ ( ( 𝐼 : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐺 ) ∧ 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ ( Base ‘ 𝐺 ) ) → ( 𝐼 ∘ 𝑊 ) : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ ( Base ‘ 𝐺 ) ) | |
| 24 | 18 22 23 | syl2an2r | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇 ) → ( 𝐼 ∘ 𝑊 ) : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ ( Base ‘ 𝐺 ) ) |
| 25 | 24 | ffnd | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇 ) → ( 𝐼 ∘ 𝑊 ) Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 26 | 20 | ffnd | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇 ) → 𝑊 Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 27 | fvco2 | ⊢ ( ( 𝑊 Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝐼 ∘ 𝑊 ) ‘ 𝑥 ) = ( 𝐼 ‘ ( 𝑊 ‘ 𝑥 ) ) ) | |
| 28 | 26 27 | sylan | ⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝐼 ∘ 𝑊 ) ‘ 𝑥 ) = ( 𝐼 ‘ ( 𝑊 ‘ 𝑥 ) ) ) |
| 29 | 20 | ffvelcdmda | ⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 ‘ 𝑥 ) ∈ 𝑇 ) |
| 30 | 11 29 | sselid | ⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 ‘ 𝑥 ) ∈ ( Base ‘ 𝐺 ) ) |
| 31 | 2 10 3 | symginv | ⊢ ( ( 𝑊 ‘ 𝑥 ) ∈ ( Base ‘ 𝐺 ) → ( 𝐼 ‘ ( 𝑊 ‘ 𝑥 ) ) = ◡ ( 𝑊 ‘ 𝑥 ) ) |
| 32 | 30 31 | syl | ⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝐼 ‘ ( 𝑊 ‘ 𝑥 ) ) = ◡ ( 𝑊 ‘ 𝑥 ) ) |
| 33 | eqid | ⊢ ( pmTrsp ‘ 𝐷 ) = ( pmTrsp ‘ 𝐷 ) | |
| 34 | 33 1 | pmtrfcnv | ⊢ ( ( 𝑊 ‘ 𝑥 ) ∈ 𝑇 → ◡ ( 𝑊 ‘ 𝑥 ) = ( 𝑊 ‘ 𝑥 ) ) |
| 35 | 29 34 | syl | ⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ◡ ( 𝑊 ‘ 𝑥 ) = ( 𝑊 ‘ 𝑥 ) ) |
| 36 | 28 32 35 | 3eqtrd | ⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝐼 ∘ 𝑊 ) ‘ 𝑥 ) = ( 𝑊 ‘ 𝑥 ) ) |
| 37 | 25 26 36 | eqfnfvd | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇 ) → ( 𝐼 ∘ 𝑊 ) = 𝑊 ) |
| 38 | 37 | oveq2d | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇 ) → ( ( oppg ‘ 𝐺 ) Σg ( 𝐼 ∘ 𝑊 ) ) = ( ( oppg ‘ 𝐺 ) Σg 𝑊 ) ) |
| 39 | 4 | grpmndd | ⊢ ( 𝐷 ∈ 𝑉 → 𝐺 ∈ Mnd ) |
| 40 | 10 5 | gsumwrev | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑊 ∈ Word ( Base ‘ 𝐺 ) ) → ( ( oppg ‘ 𝐺 ) Σg 𝑊 ) = ( 𝐺 Σg ( reverse ‘ 𝑊 ) ) ) |
| 41 | 39 14 40 | syl2an | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇 ) → ( ( oppg ‘ 𝐺 ) Σg 𝑊 ) = ( 𝐺 Σg ( reverse ‘ 𝑊 ) ) ) |
| 42 | 16 38 41 | 3eqtrd | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇 ) → ( 𝐼 ‘ ( 𝐺 Σg 𝑊 ) ) = ( 𝐺 Σg ( reverse ‘ 𝑊 ) ) ) |