This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function definition of the permutation sign function. (Contributed by Stefan O'Rear, 28-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psgnfval.g | ⊢ 𝐺 = ( SymGrp ‘ 𝐷 ) | |
| psgnfval.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | ||
| psgnfval.f | ⊢ 𝐹 = { 𝑝 ∈ 𝐵 ∣ dom ( 𝑝 ∖ I ) ∈ Fin } | ||
| psgnfval.t | ⊢ 𝑇 = ran ( pmTrsp ‘ 𝐷 ) | ||
| psgnfval.n | ⊢ 𝑁 = ( pmSgn ‘ 𝐷 ) | ||
| Assertion | psgnfval | ⊢ 𝑁 = ( 𝑥 ∈ 𝐹 ↦ ( ℩ 𝑠 ∃ 𝑤 ∈ Word 𝑇 ( 𝑥 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psgnfval.g | ⊢ 𝐺 = ( SymGrp ‘ 𝐷 ) | |
| 2 | psgnfval.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 3 | psgnfval.f | ⊢ 𝐹 = { 𝑝 ∈ 𝐵 ∣ dom ( 𝑝 ∖ I ) ∈ Fin } | |
| 4 | psgnfval.t | ⊢ 𝑇 = ran ( pmTrsp ‘ 𝐷 ) | |
| 5 | psgnfval.n | ⊢ 𝑁 = ( pmSgn ‘ 𝐷 ) | |
| 6 | fveq2 | ⊢ ( 𝑑 = 𝐷 → ( SymGrp ‘ 𝑑 ) = ( SymGrp ‘ 𝐷 ) ) | |
| 7 | 6 1 | eqtr4di | ⊢ ( 𝑑 = 𝐷 → ( SymGrp ‘ 𝑑 ) = 𝐺 ) |
| 8 | 7 | fveq2d | ⊢ ( 𝑑 = 𝐷 → ( Base ‘ ( SymGrp ‘ 𝑑 ) ) = ( Base ‘ 𝐺 ) ) |
| 9 | 8 2 | eqtr4di | ⊢ ( 𝑑 = 𝐷 → ( Base ‘ ( SymGrp ‘ 𝑑 ) ) = 𝐵 ) |
| 10 | rabeq | ⊢ ( ( Base ‘ ( SymGrp ‘ 𝑑 ) ) = 𝐵 → { 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝑑 ) ) ∣ dom ( 𝑝 ∖ I ) ∈ Fin } = { 𝑝 ∈ 𝐵 ∣ dom ( 𝑝 ∖ I ) ∈ Fin } ) | |
| 11 | 9 10 | syl | ⊢ ( 𝑑 = 𝐷 → { 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝑑 ) ) ∣ dom ( 𝑝 ∖ I ) ∈ Fin } = { 𝑝 ∈ 𝐵 ∣ dom ( 𝑝 ∖ I ) ∈ Fin } ) |
| 12 | 11 3 | eqtr4di | ⊢ ( 𝑑 = 𝐷 → { 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝑑 ) ) ∣ dom ( 𝑝 ∖ I ) ∈ Fin } = 𝐹 ) |
| 13 | fveq2 | ⊢ ( 𝑑 = 𝐷 → ( pmTrsp ‘ 𝑑 ) = ( pmTrsp ‘ 𝐷 ) ) | |
| 14 | 13 | rneqd | ⊢ ( 𝑑 = 𝐷 → ran ( pmTrsp ‘ 𝑑 ) = ran ( pmTrsp ‘ 𝐷 ) ) |
| 15 | 14 4 | eqtr4di | ⊢ ( 𝑑 = 𝐷 → ran ( pmTrsp ‘ 𝑑 ) = 𝑇 ) |
| 16 | wrdeq | ⊢ ( ran ( pmTrsp ‘ 𝑑 ) = 𝑇 → Word ran ( pmTrsp ‘ 𝑑 ) = Word 𝑇 ) | |
| 17 | 15 16 | syl | ⊢ ( 𝑑 = 𝐷 → Word ran ( pmTrsp ‘ 𝑑 ) = Word 𝑇 ) |
| 18 | 7 | oveq1d | ⊢ ( 𝑑 = 𝐷 → ( ( SymGrp ‘ 𝑑 ) Σg 𝑤 ) = ( 𝐺 Σg 𝑤 ) ) |
| 19 | 18 | eqeq2d | ⊢ ( 𝑑 = 𝐷 → ( 𝑥 = ( ( SymGrp ‘ 𝑑 ) Σg 𝑤 ) ↔ 𝑥 = ( 𝐺 Σg 𝑤 ) ) ) |
| 20 | 19 | anbi1d | ⊢ ( 𝑑 = 𝐷 → ( ( 𝑥 = ( ( SymGrp ‘ 𝑑 ) Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ↔ ( 𝑥 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) |
| 21 | 17 20 | rexeqbidv | ⊢ ( 𝑑 = 𝐷 → ( ∃ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝑑 ) ( 𝑥 = ( ( SymGrp ‘ 𝑑 ) Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ↔ ∃ 𝑤 ∈ Word 𝑇 ( 𝑥 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) |
| 22 | 21 | iotabidv | ⊢ ( 𝑑 = 𝐷 → ( ℩ 𝑠 ∃ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝑑 ) ( 𝑥 = ( ( SymGrp ‘ 𝑑 ) Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) = ( ℩ 𝑠 ∃ 𝑤 ∈ Word 𝑇 ( 𝑥 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) |
| 23 | 12 22 | mpteq12dv | ⊢ ( 𝑑 = 𝐷 → ( 𝑥 ∈ { 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝑑 ) ) ∣ dom ( 𝑝 ∖ I ) ∈ Fin } ↦ ( ℩ 𝑠 ∃ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝑑 ) ( 𝑥 = ( ( SymGrp ‘ 𝑑 ) Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) = ( 𝑥 ∈ 𝐹 ↦ ( ℩ 𝑠 ∃ 𝑤 ∈ Word 𝑇 ( 𝑥 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) ) |
| 24 | df-psgn | ⊢ pmSgn = ( 𝑑 ∈ V ↦ ( 𝑥 ∈ { 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝑑 ) ) ∣ dom ( 𝑝 ∖ I ) ∈ Fin } ↦ ( ℩ 𝑠 ∃ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝑑 ) ( 𝑥 = ( ( SymGrp ‘ 𝑑 ) Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) ) | |
| 25 | 2 | fvexi | ⊢ 𝐵 ∈ V |
| 26 | 3 25 | rabex2 | ⊢ 𝐹 ∈ V |
| 27 | 26 | mptex | ⊢ ( 𝑥 ∈ 𝐹 ↦ ( ℩ 𝑠 ∃ 𝑤 ∈ Word 𝑇 ( 𝑥 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) ∈ V |
| 28 | 23 24 27 | fvmpt | ⊢ ( 𝐷 ∈ V → ( pmSgn ‘ 𝐷 ) = ( 𝑥 ∈ 𝐹 ↦ ( ℩ 𝑠 ∃ 𝑤 ∈ Word 𝑇 ( 𝑥 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) ) |
| 29 | fvprc | ⊢ ( ¬ 𝐷 ∈ V → ( pmSgn ‘ 𝐷 ) = ∅ ) | |
| 30 | fvprc | ⊢ ( ¬ 𝐷 ∈ V → ( SymGrp ‘ 𝐷 ) = ∅ ) | |
| 31 | 1 30 | eqtrid | ⊢ ( ¬ 𝐷 ∈ V → 𝐺 = ∅ ) |
| 32 | 31 | fveq2d | ⊢ ( ¬ 𝐷 ∈ V → ( Base ‘ 𝐺 ) = ( Base ‘ ∅ ) ) |
| 33 | base0 | ⊢ ∅ = ( Base ‘ ∅ ) | |
| 34 | 32 33 | eqtr4di | ⊢ ( ¬ 𝐷 ∈ V → ( Base ‘ 𝐺 ) = ∅ ) |
| 35 | 2 34 | eqtrid | ⊢ ( ¬ 𝐷 ∈ V → 𝐵 = ∅ ) |
| 36 | rabeq | ⊢ ( 𝐵 = ∅ → { 𝑝 ∈ 𝐵 ∣ dom ( 𝑝 ∖ I ) ∈ Fin } = { 𝑝 ∈ ∅ ∣ dom ( 𝑝 ∖ I ) ∈ Fin } ) | |
| 37 | 35 36 | syl | ⊢ ( ¬ 𝐷 ∈ V → { 𝑝 ∈ 𝐵 ∣ dom ( 𝑝 ∖ I ) ∈ Fin } = { 𝑝 ∈ ∅ ∣ dom ( 𝑝 ∖ I ) ∈ Fin } ) |
| 38 | rab0 | ⊢ { 𝑝 ∈ ∅ ∣ dom ( 𝑝 ∖ I ) ∈ Fin } = ∅ | |
| 39 | 37 38 | eqtrdi | ⊢ ( ¬ 𝐷 ∈ V → { 𝑝 ∈ 𝐵 ∣ dom ( 𝑝 ∖ I ) ∈ Fin } = ∅ ) |
| 40 | 3 39 | eqtrid | ⊢ ( ¬ 𝐷 ∈ V → 𝐹 = ∅ ) |
| 41 | 40 | mpteq1d | ⊢ ( ¬ 𝐷 ∈ V → ( 𝑥 ∈ 𝐹 ↦ ( ℩ 𝑠 ∃ 𝑤 ∈ Word 𝑇 ( 𝑥 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) = ( 𝑥 ∈ ∅ ↦ ( ℩ 𝑠 ∃ 𝑤 ∈ Word 𝑇 ( 𝑥 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) ) |
| 42 | mpt0 | ⊢ ( 𝑥 ∈ ∅ ↦ ( ℩ 𝑠 ∃ 𝑤 ∈ Word 𝑇 ( 𝑥 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) = ∅ | |
| 43 | 41 42 | eqtrdi | ⊢ ( ¬ 𝐷 ∈ V → ( 𝑥 ∈ 𝐹 ↦ ( ℩ 𝑠 ∃ 𝑤 ∈ Word 𝑇 ( 𝑥 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) = ∅ ) |
| 44 | 29 43 | eqtr4d | ⊢ ( ¬ 𝐷 ∈ V → ( pmSgn ‘ 𝐷 ) = ( 𝑥 ∈ 𝐹 ↦ ( ℩ 𝑠 ∃ 𝑤 ∈ Word 𝑇 ( 𝑥 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) ) |
| 45 | 28 44 | pm2.61i | ⊢ ( pmSgn ‘ 𝐷 ) = ( 𝑥 ∈ 𝐹 ↦ ( ℩ 𝑠 ∃ 𝑤 ∈ Word 𝑇 ( 𝑥 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) |
| 46 | 5 45 | eqtri | ⊢ 𝑁 = ( 𝑥 ∈ 𝐹 ↦ ( ℩ 𝑠 ∃ 𝑤 ∈ Word 𝑇 ( 𝑥 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) |