This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Exponent subtraction law for integer exponentiation. (Contributed by NM, 2-Aug-2006) (Revised by Mario Carneiro, 4-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | expsub | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( 𝐴 ↑ ( 𝑀 − 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) / ( 𝐴 ↑ 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | znegcl | ⊢ ( 𝑁 ∈ ℤ → - 𝑁 ∈ ℤ ) | |
| 2 | expaddz | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℤ ∧ - 𝑁 ∈ ℤ ) ) → ( 𝐴 ↑ ( 𝑀 + - 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ - 𝑁 ) ) ) | |
| 3 | 1 2 | sylanr2 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( 𝐴 ↑ ( 𝑀 + - 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ - 𝑁 ) ) ) |
| 4 | zcn | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℂ ) | |
| 5 | zcn | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) | |
| 6 | negsub | ⊢ ( ( 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ) → ( 𝑀 + - 𝑁 ) = ( 𝑀 − 𝑁 ) ) | |
| 7 | 4 5 6 | syl2an | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 + - 𝑁 ) = ( 𝑀 − 𝑁 ) ) |
| 8 | 7 | adantl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( 𝑀 + - 𝑁 ) = ( 𝑀 − 𝑁 ) ) |
| 9 | 8 | oveq2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( 𝐴 ↑ ( 𝑀 + - 𝑁 ) ) = ( 𝐴 ↑ ( 𝑀 − 𝑁 ) ) ) |
| 10 | expnegz | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( 𝐴 ↑ - 𝑁 ) = ( 1 / ( 𝐴 ↑ 𝑁 ) ) ) | |
| 11 | 10 | 3expa | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝑁 ∈ ℤ ) → ( 𝐴 ↑ - 𝑁 ) = ( 1 / ( 𝐴 ↑ 𝑁 ) ) ) |
| 12 | 11 | adantrl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( 𝐴 ↑ - 𝑁 ) = ( 1 / ( 𝐴 ↑ 𝑁 ) ) ) |
| 13 | 12 | oveq2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ - 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 1 / ( 𝐴 ↑ 𝑁 ) ) ) ) |
| 14 | expclz | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑀 ∈ ℤ ) → ( 𝐴 ↑ 𝑀 ) ∈ ℂ ) | |
| 15 | 14 | 3expa | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝑀 ∈ ℤ ) → ( 𝐴 ↑ 𝑀 ) ∈ ℂ ) |
| 16 | 15 | adantrr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( 𝐴 ↑ 𝑀 ) ∈ ℂ ) |
| 17 | expclz | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( 𝐴 ↑ 𝑁 ) ∈ ℂ ) | |
| 18 | 17 | 3expa | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝑁 ∈ ℤ ) → ( 𝐴 ↑ 𝑁 ) ∈ ℂ ) |
| 19 | 18 | adantrl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( 𝐴 ↑ 𝑁 ) ∈ ℂ ) |
| 20 | expne0i | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( 𝐴 ↑ 𝑁 ) ≠ 0 ) | |
| 21 | 20 | 3expa | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝑁 ∈ ℤ ) → ( 𝐴 ↑ 𝑁 ) ≠ 0 ) |
| 22 | 21 | adantrl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( 𝐴 ↑ 𝑁 ) ≠ 0 ) |
| 23 | 16 19 22 | divrecd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( ( 𝐴 ↑ 𝑀 ) / ( 𝐴 ↑ 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 1 / ( 𝐴 ↑ 𝑁 ) ) ) ) |
| 24 | 13 23 | eqtr4d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ - 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) / ( 𝐴 ↑ 𝑁 ) ) ) |
| 25 | 3 9 24 | 3eqtr3d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( 𝐴 ↑ ( 𝑀 − 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) / ( 𝐴 ↑ 𝑁 ) ) ) |