This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The projective map of the join of a lattice element and an atom. (Contributed by NM, 28-Jan-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmapjat.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| pmapjat.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| pmapjat.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| pmapjat.m | ⊢ 𝑀 = ( pmap ‘ 𝐾 ) | ||
| pmapjat.p | ⊢ + = ( +𝑃 ‘ 𝐾 ) | ||
| Assertion | pmapjat1 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑀 ‘ ( 𝑋 ∨ 𝑄 ) ) = ( ( 𝑀 ‘ 𝑋 ) + ( 𝑀 ‘ 𝑄 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmapjat.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | pmapjat.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 3 | pmapjat.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 4 | pmapjat.m | ⊢ 𝑀 = ( pmap ‘ 𝐾 ) | |
| 5 | pmapjat.p | ⊢ + = ( +𝑃 ‘ 𝐾 ) | |
| 6 | simp1 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → 𝐾 ∈ HL ) | |
| 7 | 1 3 | atbase | ⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵 ) |
| 8 | 7 | 3ad2ant3 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → 𝑄 ∈ 𝐵 ) |
| 9 | 1 3 4 | pmapssat | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑄 ∈ 𝐵 ) → ( 𝑀 ‘ 𝑄 ) ⊆ 𝐴 ) |
| 10 | 6 8 9 | syl2anc | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑀 ‘ 𝑄 ) ⊆ 𝐴 ) |
| 11 | 3 5 | padd02 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑀 ‘ 𝑄 ) ⊆ 𝐴 ) → ( ∅ + ( 𝑀 ‘ 𝑄 ) ) = ( 𝑀 ‘ 𝑄 ) ) |
| 12 | 6 10 11 | syl2anc | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → ( ∅ + ( 𝑀 ‘ 𝑄 ) ) = ( 𝑀 ‘ 𝑄 ) ) |
| 13 | 12 | adantr | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 = ( 0. ‘ 𝐾 ) ) → ( ∅ + ( 𝑀 ‘ 𝑄 ) ) = ( 𝑀 ‘ 𝑄 ) ) |
| 14 | fveq2 | ⊢ ( 𝑋 = ( 0. ‘ 𝐾 ) → ( 𝑀 ‘ 𝑋 ) = ( 𝑀 ‘ ( 0. ‘ 𝐾 ) ) ) | |
| 15 | hlatl | ⊢ ( 𝐾 ∈ HL → 𝐾 ∈ AtLat ) | |
| 16 | 15 | 3ad2ant1 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → 𝐾 ∈ AtLat ) |
| 17 | eqid | ⊢ ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 ) | |
| 18 | 17 4 | pmap0 | ⊢ ( 𝐾 ∈ AtLat → ( 𝑀 ‘ ( 0. ‘ 𝐾 ) ) = ∅ ) |
| 19 | 16 18 | syl | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑀 ‘ ( 0. ‘ 𝐾 ) ) = ∅ ) |
| 20 | 14 19 | sylan9eqr | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 = ( 0. ‘ 𝐾 ) ) → ( 𝑀 ‘ 𝑋 ) = ∅ ) |
| 21 | 20 | oveq1d | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 = ( 0. ‘ 𝐾 ) ) → ( ( 𝑀 ‘ 𝑋 ) + ( 𝑀 ‘ 𝑄 ) ) = ( ∅ + ( 𝑀 ‘ 𝑄 ) ) ) |
| 22 | oveq1 | ⊢ ( 𝑋 = ( 0. ‘ 𝐾 ) → ( 𝑋 ∨ 𝑄 ) = ( ( 0. ‘ 𝐾 ) ∨ 𝑄 ) ) | |
| 23 | hlol | ⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OL ) | |
| 24 | 23 | 3ad2ant1 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → 𝐾 ∈ OL ) |
| 25 | 1 2 17 | olj02 | ⊢ ( ( 𝐾 ∈ OL ∧ 𝑄 ∈ 𝐵 ) → ( ( 0. ‘ 𝐾 ) ∨ 𝑄 ) = 𝑄 ) |
| 26 | 24 8 25 | syl2anc | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → ( ( 0. ‘ 𝐾 ) ∨ 𝑄 ) = 𝑄 ) |
| 27 | 22 26 | sylan9eqr | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 = ( 0. ‘ 𝐾 ) ) → ( 𝑋 ∨ 𝑄 ) = 𝑄 ) |
| 28 | 27 | fveq2d | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 = ( 0. ‘ 𝐾 ) ) → ( 𝑀 ‘ ( 𝑋 ∨ 𝑄 ) ) = ( 𝑀 ‘ 𝑄 ) ) |
| 29 | 13 21 28 | 3eqtr4rd | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 = ( 0. ‘ 𝐾 ) ) → ( 𝑀 ‘ ( 𝑋 ∨ 𝑄 ) ) = ( ( 𝑀 ‘ 𝑋 ) + ( 𝑀 ‘ 𝑄 ) ) ) |
| 30 | simpll1 | ⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 ≠ ( 0. ‘ 𝐾 ) ) ∧ 𝑝 ∈ 𝐴 ) → 𝐾 ∈ HL ) | |
| 31 | 30 | adantr | ⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 ≠ ( 0. ‘ 𝐾 ) ) ∧ 𝑝 ∈ 𝐴 ) ∧ 𝑝 ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑄 ) ) → 𝐾 ∈ HL ) |
| 32 | simpll2 | ⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 ≠ ( 0. ‘ 𝐾 ) ) ∧ 𝑝 ∈ 𝐴 ) → 𝑋 ∈ 𝐵 ) | |
| 33 | 32 | adantr | ⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 ≠ ( 0. ‘ 𝐾 ) ) ∧ 𝑝 ∈ 𝐴 ) ∧ 𝑝 ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑄 ) ) → 𝑋 ∈ 𝐵 ) |
| 34 | simplr | ⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 ≠ ( 0. ‘ 𝐾 ) ) ∧ 𝑝 ∈ 𝐴 ) ∧ 𝑝 ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑄 ) ) → 𝑝 ∈ 𝐴 ) | |
| 35 | simpll3 | ⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 ≠ ( 0. ‘ 𝐾 ) ) ∧ 𝑝 ∈ 𝐴 ) → 𝑄 ∈ 𝐴 ) | |
| 36 | 35 | adantr | ⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 ≠ ( 0. ‘ 𝐾 ) ) ∧ 𝑝 ∈ 𝐴 ) ∧ 𝑝 ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑄 ) ) → 𝑄 ∈ 𝐴 ) |
| 37 | 33 34 36 | 3jca | ⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 ≠ ( 0. ‘ 𝐾 ) ) ∧ 𝑝 ∈ 𝐴 ) ∧ 𝑝 ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑄 ) ) → ( 𝑋 ∈ 𝐵 ∧ 𝑝 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) |
| 38 | simpllr | ⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 ≠ ( 0. ‘ 𝐾 ) ) ∧ 𝑝 ∈ 𝐴 ) ∧ 𝑝 ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑄 ) ) → 𝑋 ≠ ( 0. ‘ 𝐾 ) ) | |
| 39 | simpr | ⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 ≠ ( 0. ‘ 𝐾 ) ) ∧ 𝑝 ∈ 𝐴 ) ∧ 𝑝 ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑄 ) ) → 𝑝 ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑄 ) ) | |
| 40 | eqid | ⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) | |
| 41 | 1 40 2 17 3 | cvrat42 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑝 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ( 𝑋 ≠ ( 0. ‘ 𝐾 ) ∧ 𝑝 ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑄 ) ) → ∃ 𝑞 ∈ 𝐴 ( 𝑞 ( le ‘ 𝐾 ) 𝑋 ∧ 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑄 ) ) ) ) |
| 42 | 41 | imp | ⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑝 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ ( 𝑋 ≠ ( 0. ‘ 𝐾 ) ∧ 𝑝 ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑄 ) ) ) → ∃ 𝑞 ∈ 𝐴 ( 𝑞 ( le ‘ 𝐾 ) 𝑋 ∧ 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑄 ) ) ) |
| 43 | 31 37 38 39 42 | syl22anc | ⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 ≠ ( 0. ‘ 𝐾 ) ) ∧ 𝑝 ∈ 𝐴 ) ∧ 𝑝 ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑄 ) ) → ∃ 𝑞 ∈ 𝐴 ( 𝑞 ( le ‘ 𝐾 ) 𝑋 ∧ 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑄 ) ) ) |
| 44 | 43 | ex | ⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 ≠ ( 0. ‘ 𝐾 ) ) ∧ 𝑝 ∈ 𝐴 ) → ( 𝑝 ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑄 ) → ∃ 𝑞 ∈ 𝐴 ( 𝑞 ( le ‘ 𝐾 ) 𝑋 ∧ 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑄 ) ) ) ) |
| 45 | 1 40 3 4 | elpmap | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) → ( 𝑞 ∈ ( 𝑀 ‘ 𝑋 ) ↔ ( 𝑞 ∈ 𝐴 ∧ 𝑞 ( le ‘ 𝐾 ) 𝑋 ) ) ) |
| 46 | 45 | 3adant3 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑞 ∈ ( 𝑀 ‘ 𝑋 ) ↔ ( 𝑞 ∈ 𝐴 ∧ 𝑞 ( le ‘ 𝐾 ) 𝑋 ) ) ) |
| 47 | df-rex | ⊢ ( ∃ 𝑟 ∈ ( 𝑀 ‘ 𝑄 ) 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑟 ) ↔ ∃ 𝑟 ( 𝑟 ∈ ( 𝑀 ‘ 𝑄 ) ∧ 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑟 ) ) ) | |
| 48 | 3 4 | elpmapat | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ) → ( 𝑟 ∈ ( 𝑀 ‘ 𝑄 ) ↔ 𝑟 = 𝑄 ) ) |
| 49 | 48 | 3adant2 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑟 ∈ ( 𝑀 ‘ 𝑄 ) ↔ 𝑟 = 𝑄 ) ) |
| 50 | 49 | anbi1d | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → ( ( 𝑟 ∈ ( 𝑀 ‘ 𝑄 ) ∧ 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑟 ) ) ↔ ( 𝑟 = 𝑄 ∧ 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑟 ) ) ) ) |
| 51 | 50 | exbidv | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → ( ∃ 𝑟 ( 𝑟 ∈ ( 𝑀 ‘ 𝑄 ) ∧ 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑟 ) ) ↔ ∃ 𝑟 ( 𝑟 = 𝑄 ∧ 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑟 ) ) ) ) |
| 52 | 47 51 | bitr2id | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → ( ∃ 𝑟 ( 𝑟 = 𝑄 ∧ 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑟 ) ) ↔ ∃ 𝑟 ∈ ( 𝑀 ‘ 𝑄 ) 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑟 ) ) ) |
| 53 | oveq2 | ⊢ ( 𝑟 = 𝑄 → ( 𝑞 ∨ 𝑟 ) = ( 𝑞 ∨ 𝑄 ) ) | |
| 54 | 53 | breq2d | ⊢ ( 𝑟 = 𝑄 → ( 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑟 ) ↔ 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑄 ) ) ) |
| 55 | 54 | ceqsexgv | ⊢ ( 𝑄 ∈ 𝐴 → ( ∃ 𝑟 ( 𝑟 = 𝑄 ∧ 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑟 ) ) ↔ 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑄 ) ) ) |
| 56 | 55 | 3ad2ant3 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → ( ∃ 𝑟 ( 𝑟 = 𝑄 ∧ 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑟 ) ) ↔ 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑄 ) ) ) |
| 57 | 52 56 | bitr3d | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → ( ∃ 𝑟 ∈ ( 𝑀 ‘ 𝑄 ) 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑟 ) ↔ 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑄 ) ) ) |
| 58 | 46 57 | anbi12d | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → ( ( 𝑞 ∈ ( 𝑀 ‘ 𝑋 ) ∧ ∃ 𝑟 ∈ ( 𝑀 ‘ 𝑄 ) 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑟 ) ) ↔ ( ( 𝑞 ∈ 𝐴 ∧ 𝑞 ( le ‘ 𝐾 ) 𝑋 ) ∧ 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑄 ) ) ) ) |
| 59 | anass | ⊢ ( ( ( 𝑞 ∈ 𝐴 ∧ 𝑞 ( le ‘ 𝐾 ) 𝑋 ) ∧ 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑄 ) ) ↔ ( 𝑞 ∈ 𝐴 ∧ ( 𝑞 ( le ‘ 𝐾 ) 𝑋 ∧ 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑄 ) ) ) ) | |
| 60 | 58 59 | bitrdi | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → ( ( 𝑞 ∈ ( 𝑀 ‘ 𝑋 ) ∧ ∃ 𝑟 ∈ ( 𝑀 ‘ 𝑄 ) 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑟 ) ) ↔ ( 𝑞 ∈ 𝐴 ∧ ( 𝑞 ( le ‘ 𝐾 ) 𝑋 ∧ 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑄 ) ) ) ) ) |
| 61 | 60 | rexbidv2 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → ( ∃ 𝑞 ∈ ( 𝑀 ‘ 𝑋 ) ∃ 𝑟 ∈ ( 𝑀 ‘ 𝑄 ) 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑟 ) ↔ ∃ 𝑞 ∈ 𝐴 ( 𝑞 ( le ‘ 𝐾 ) 𝑋 ∧ 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑄 ) ) ) ) |
| 62 | 61 | ad2antrr | ⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 ≠ ( 0. ‘ 𝐾 ) ) ∧ 𝑝 ∈ 𝐴 ) → ( ∃ 𝑞 ∈ ( 𝑀 ‘ 𝑋 ) ∃ 𝑟 ∈ ( 𝑀 ‘ 𝑄 ) 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑟 ) ↔ ∃ 𝑞 ∈ 𝐴 ( 𝑞 ( le ‘ 𝐾 ) 𝑋 ∧ 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑄 ) ) ) ) |
| 63 | 44 62 | sylibrd | ⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 ≠ ( 0. ‘ 𝐾 ) ) ∧ 𝑝 ∈ 𝐴 ) → ( 𝑝 ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑄 ) → ∃ 𝑞 ∈ ( 𝑀 ‘ 𝑋 ) ∃ 𝑟 ∈ ( 𝑀 ‘ 𝑄 ) 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑟 ) ) ) |
| 64 | 63 | imdistanda | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 ≠ ( 0. ‘ 𝐾 ) ) → ( ( 𝑝 ∈ 𝐴 ∧ 𝑝 ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑄 ) ) → ( 𝑝 ∈ 𝐴 ∧ ∃ 𝑞 ∈ ( 𝑀 ‘ 𝑋 ) ∃ 𝑟 ∈ ( 𝑀 ‘ 𝑄 ) 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑟 ) ) ) ) |
| 65 | hllat | ⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Lat ) | |
| 66 | 65 | 3ad2ant1 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → 𝐾 ∈ Lat ) |
| 67 | simp2 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → 𝑋 ∈ 𝐵 ) | |
| 68 | 1 2 | latjcl | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵 ) → ( 𝑋 ∨ 𝑄 ) ∈ 𝐵 ) |
| 69 | 66 67 8 68 | syl3anc | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑋 ∨ 𝑄 ) ∈ 𝐵 ) |
| 70 | 1 40 3 4 | elpmap | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∨ 𝑄 ) ∈ 𝐵 ) → ( 𝑝 ∈ ( 𝑀 ‘ ( 𝑋 ∨ 𝑄 ) ) ↔ ( 𝑝 ∈ 𝐴 ∧ 𝑝 ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑄 ) ) ) ) |
| 71 | 6 69 70 | syl2anc | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑝 ∈ ( 𝑀 ‘ ( 𝑋 ∨ 𝑄 ) ) ↔ ( 𝑝 ∈ 𝐴 ∧ 𝑝 ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑄 ) ) ) ) |
| 72 | 71 | adantr | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 ≠ ( 0. ‘ 𝐾 ) ) → ( 𝑝 ∈ ( 𝑀 ‘ ( 𝑋 ∨ 𝑄 ) ) ↔ ( 𝑝 ∈ 𝐴 ∧ 𝑝 ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑄 ) ) ) ) |
| 73 | 1 3 4 | pmapssat | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) → ( 𝑀 ‘ 𝑋 ) ⊆ 𝐴 ) |
| 74 | 73 | 3adant3 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑀 ‘ 𝑋 ) ⊆ 𝐴 ) |
| 75 | 66 74 10 | 3jca | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → ( 𝐾 ∈ Lat ∧ ( 𝑀 ‘ 𝑋 ) ⊆ 𝐴 ∧ ( 𝑀 ‘ 𝑄 ) ⊆ 𝐴 ) ) |
| 76 | 75 | adantr | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 ≠ ( 0. ‘ 𝐾 ) ) → ( 𝐾 ∈ Lat ∧ ( 𝑀 ‘ 𝑋 ) ⊆ 𝐴 ∧ ( 𝑀 ‘ 𝑄 ) ⊆ 𝐴 ) ) |
| 77 | 1 17 4 | pmapeq0 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑀 ‘ 𝑋 ) = ∅ ↔ 𝑋 = ( 0. ‘ 𝐾 ) ) ) |
| 78 | 77 | 3adant3 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → ( ( 𝑀 ‘ 𝑋 ) = ∅ ↔ 𝑋 = ( 0. ‘ 𝐾 ) ) ) |
| 79 | 78 | necon3bid | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → ( ( 𝑀 ‘ 𝑋 ) ≠ ∅ ↔ 𝑋 ≠ ( 0. ‘ 𝐾 ) ) ) |
| 80 | 79 | biimpar | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 ≠ ( 0. ‘ 𝐾 ) ) → ( 𝑀 ‘ 𝑋 ) ≠ ∅ ) |
| 81 | simp3 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → 𝑄 ∈ 𝐴 ) | |
| 82 | 17 3 | atn0 | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑄 ∈ 𝐴 ) → 𝑄 ≠ ( 0. ‘ 𝐾 ) ) |
| 83 | 16 81 82 | syl2anc | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → 𝑄 ≠ ( 0. ‘ 𝐾 ) ) |
| 84 | 1 17 4 | pmapeq0 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑄 ∈ 𝐵 ) → ( ( 𝑀 ‘ 𝑄 ) = ∅ ↔ 𝑄 = ( 0. ‘ 𝐾 ) ) ) |
| 85 | 6 8 84 | syl2anc | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → ( ( 𝑀 ‘ 𝑄 ) = ∅ ↔ 𝑄 = ( 0. ‘ 𝐾 ) ) ) |
| 86 | 85 | necon3bid | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → ( ( 𝑀 ‘ 𝑄 ) ≠ ∅ ↔ 𝑄 ≠ ( 0. ‘ 𝐾 ) ) ) |
| 87 | 83 86 | mpbird | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑀 ‘ 𝑄 ) ≠ ∅ ) |
| 88 | 87 | adantr | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 ≠ ( 0. ‘ 𝐾 ) ) → ( 𝑀 ‘ 𝑄 ) ≠ ∅ ) |
| 89 | 40 2 3 5 | elpaddn0 | ⊢ ( ( ( 𝐾 ∈ Lat ∧ ( 𝑀 ‘ 𝑋 ) ⊆ 𝐴 ∧ ( 𝑀 ‘ 𝑄 ) ⊆ 𝐴 ) ∧ ( ( 𝑀 ‘ 𝑋 ) ≠ ∅ ∧ ( 𝑀 ‘ 𝑄 ) ≠ ∅ ) ) → ( 𝑝 ∈ ( ( 𝑀 ‘ 𝑋 ) + ( 𝑀 ‘ 𝑄 ) ) ↔ ( 𝑝 ∈ 𝐴 ∧ ∃ 𝑞 ∈ ( 𝑀 ‘ 𝑋 ) ∃ 𝑟 ∈ ( 𝑀 ‘ 𝑄 ) 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑟 ) ) ) ) |
| 90 | 76 80 88 89 | syl12anc | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 ≠ ( 0. ‘ 𝐾 ) ) → ( 𝑝 ∈ ( ( 𝑀 ‘ 𝑋 ) + ( 𝑀 ‘ 𝑄 ) ) ↔ ( 𝑝 ∈ 𝐴 ∧ ∃ 𝑞 ∈ ( 𝑀 ‘ 𝑋 ) ∃ 𝑟 ∈ ( 𝑀 ‘ 𝑄 ) 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑟 ) ) ) ) |
| 91 | 64 72 90 | 3imtr4d | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 ≠ ( 0. ‘ 𝐾 ) ) → ( 𝑝 ∈ ( 𝑀 ‘ ( 𝑋 ∨ 𝑄 ) ) → 𝑝 ∈ ( ( 𝑀 ‘ 𝑋 ) + ( 𝑀 ‘ 𝑄 ) ) ) ) |
| 92 | 91 | ssrdv | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 ≠ ( 0. ‘ 𝐾 ) ) → ( 𝑀 ‘ ( 𝑋 ∨ 𝑄 ) ) ⊆ ( ( 𝑀 ‘ 𝑋 ) + ( 𝑀 ‘ 𝑄 ) ) ) |
| 93 | 1 2 4 5 | pmapjoin | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵 ) → ( ( 𝑀 ‘ 𝑋 ) + ( 𝑀 ‘ 𝑄 ) ) ⊆ ( 𝑀 ‘ ( 𝑋 ∨ 𝑄 ) ) ) |
| 94 | 66 67 8 93 | syl3anc | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → ( ( 𝑀 ‘ 𝑋 ) + ( 𝑀 ‘ 𝑄 ) ) ⊆ ( 𝑀 ‘ ( 𝑋 ∨ 𝑄 ) ) ) |
| 95 | 94 | adantr | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 ≠ ( 0. ‘ 𝐾 ) ) → ( ( 𝑀 ‘ 𝑋 ) + ( 𝑀 ‘ 𝑄 ) ) ⊆ ( 𝑀 ‘ ( 𝑋 ∨ 𝑄 ) ) ) |
| 96 | 92 95 | eqssd | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 ≠ ( 0. ‘ 𝐾 ) ) → ( 𝑀 ‘ ( 𝑋 ∨ 𝑄 ) ) = ( ( 𝑀 ‘ 𝑋 ) + ( 𝑀 ‘ 𝑄 ) ) ) |
| 97 | 29 96 | pm2.61dane | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑀 ‘ ( 𝑋 ∨ 𝑄 ) ) = ( ( 𝑀 ‘ 𝑋 ) + ( 𝑀 ‘ 𝑄 ) ) ) |