This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the projective map of a Hilbert lattice at lattice zero. Part of Theorem 15.5.1 of MaedaMaeda p. 62. (Contributed by NM, 17-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmap0.z | ⊢ 0 = ( 0. ‘ 𝐾 ) | |
| pmap0.m | ⊢ 𝑀 = ( pmap ‘ 𝐾 ) | ||
| Assertion | pmap0 | ⊢ ( 𝐾 ∈ AtLat → ( 𝑀 ‘ 0 ) = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmap0.z | ⊢ 0 = ( 0. ‘ 𝐾 ) | |
| 2 | pmap0.m | ⊢ 𝑀 = ( pmap ‘ 𝐾 ) | |
| 3 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
| 4 | 3 1 | atl0cl | ⊢ ( 𝐾 ∈ AtLat → 0 ∈ ( Base ‘ 𝐾 ) ) |
| 5 | eqid | ⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) | |
| 6 | eqid | ⊢ ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 ) | |
| 7 | 3 5 6 2 | pmapval | ⊢ ( ( 𝐾 ∈ AtLat ∧ 0 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑀 ‘ 0 ) = { 𝑎 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑎 ( le ‘ 𝐾 ) 0 } ) |
| 8 | 4 7 | mpdan | ⊢ ( 𝐾 ∈ AtLat → ( 𝑀 ‘ 0 ) = { 𝑎 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑎 ( le ‘ 𝐾 ) 0 } ) |
| 9 | 5 1 6 | atnle0 | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑎 ∈ ( Atoms ‘ 𝐾 ) ) → ¬ 𝑎 ( le ‘ 𝐾 ) 0 ) |
| 10 | 9 | nrexdv | ⊢ ( 𝐾 ∈ AtLat → ¬ ∃ 𝑎 ∈ ( Atoms ‘ 𝐾 ) 𝑎 ( le ‘ 𝐾 ) 0 ) |
| 11 | rabn0 | ⊢ ( { 𝑎 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑎 ( le ‘ 𝐾 ) 0 } ≠ ∅ ↔ ∃ 𝑎 ∈ ( Atoms ‘ 𝐾 ) 𝑎 ( le ‘ 𝐾 ) 0 ) | |
| 12 | 10 11 | sylnibr | ⊢ ( 𝐾 ∈ AtLat → ¬ { 𝑎 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑎 ( le ‘ 𝐾 ) 0 } ≠ ∅ ) |
| 13 | nne | ⊢ ( ¬ { 𝑎 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑎 ( le ‘ 𝐾 ) 0 } ≠ ∅ ↔ { 𝑎 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑎 ( le ‘ 𝐾 ) 0 } = ∅ ) | |
| 14 | 12 13 | sylib | ⊢ ( 𝐾 ∈ AtLat → { 𝑎 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑎 ( le ‘ 𝐾 ) 0 } = ∅ ) |
| 15 | 8 14 | eqtrd | ⊢ ( 𝐾 ∈ AtLat → ( 𝑀 ‘ 0 ) = ∅ ) |