This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Projective subspace sum with an empty set. (Contributed by NM, 11-Jan-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | padd0.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| padd0.p | ⊢ + = ( +𝑃 ‘ 𝐾 ) | ||
| Assertion | padd02 | ⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ) → ( ∅ + 𝑋 ) = 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | padd0.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 2 | padd0.p | ⊢ + = ( +𝑃 ‘ 𝐾 ) | |
| 3 | simpl | ⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ) → 𝐾 ∈ 𝐵 ) | |
| 4 | 0ss | ⊢ ∅ ⊆ 𝐴 | |
| 5 | 4 | a1i | ⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ) → ∅ ⊆ 𝐴 ) |
| 6 | simpr | ⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ) → 𝑋 ⊆ 𝐴 ) | |
| 7 | 3 5 6 | 3jca | ⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ) → ( 𝐾 ∈ 𝐵 ∧ ∅ ⊆ 𝐴 ∧ 𝑋 ⊆ 𝐴 ) ) |
| 8 | neirr | ⊢ ¬ ∅ ≠ ∅ | |
| 9 | 8 | intnanr | ⊢ ¬ ( ∅ ≠ ∅ ∧ 𝑋 ≠ ∅ ) |
| 10 | 1 2 | paddval0 | ⊢ ( ( ( 𝐾 ∈ 𝐵 ∧ ∅ ⊆ 𝐴 ∧ 𝑋 ⊆ 𝐴 ) ∧ ¬ ( ∅ ≠ ∅ ∧ 𝑋 ≠ ∅ ) ) → ( ∅ + 𝑋 ) = ( ∅ ∪ 𝑋 ) ) |
| 11 | 7 9 10 | sylancl | ⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ) → ( ∅ + 𝑋 ) = ( ∅ ∪ 𝑋 ) ) |
| 12 | uncom | ⊢ ( ∅ ∪ 𝑋 ) = ( 𝑋 ∪ ∅ ) | |
| 13 | un0 | ⊢ ( 𝑋 ∪ ∅ ) = 𝑋 | |
| 14 | 12 13 | eqtri | ⊢ ( ∅ ∪ 𝑋 ) = 𝑋 |
| 15 | 11 14 | eqtrdi | ⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ) → ( ∅ + 𝑋 ) = 𝑋 ) |