This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The projective map of the join of a lattice element and an atom. (Contributed by NM, 28-Jan-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmapjat.b | |- B = ( Base ` K ) |
|
| pmapjat.j | |- .\/ = ( join ` K ) |
||
| pmapjat.a | |- A = ( Atoms ` K ) |
||
| pmapjat.m | |- M = ( pmap ` K ) |
||
| pmapjat.p | |- .+ = ( +P ` K ) |
||
| Assertion | pmapjat1 | |- ( ( K e. HL /\ X e. B /\ Q e. A ) -> ( M ` ( X .\/ Q ) ) = ( ( M ` X ) .+ ( M ` Q ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmapjat.b | |- B = ( Base ` K ) |
|
| 2 | pmapjat.j | |- .\/ = ( join ` K ) |
|
| 3 | pmapjat.a | |- A = ( Atoms ` K ) |
|
| 4 | pmapjat.m | |- M = ( pmap ` K ) |
|
| 5 | pmapjat.p | |- .+ = ( +P ` K ) |
|
| 6 | simp1 | |- ( ( K e. HL /\ X e. B /\ Q e. A ) -> K e. HL ) |
|
| 7 | 1 3 | atbase | |- ( Q e. A -> Q e. B ) |
| 8 | 7 | 3ad2ant3 | |- ( ( K e. HL /\ X e. B /\ Q e. A ) -> Q e. B ) |
| 9 | 1 3 4 | pmapssat | |- ( ( K e. HL /\ Q e. B ) -> ( M ` Q ) C_ A ) |
| 10 | 6 8 9 | syl2anc | |- ( ( K e. HL /\ X e. B /\ Q e. A ) -> ( M ` Q ) C_ A ) |
| 11 | 3 5 | padd02 | |- ( ( K e. HL /\ ( M ` Q ) C_ A ) -> ( (/) .+ ( M ` Q ) ) = ( M ` Q ) ) |
| 12 | 6 10 11 | syl2anc | |- ( ( K e. HL /\ X e. B /\ Q e. A ) -> ( (/) .+ ( M ` Q ) ) = ( M ` Q ) ) |
| 13 | 12 | adantr | |- ( ( ( K e. HL /\ X e. B /\ Q e. A ) /\ X = ( 0. ` K ) ) -> ( (/) .+ ( M ` Q ) ) = ( M ` Q ) ) |
| 14 | fveq2 | |- ( X = ( 0. ` K ) -> ( M ` X ) = ( M ` ( 0. ` K ) ) ) |
|
| 15 | hlatl | |- ( K e. HL -> K e. AtLat ) |
|
| 16 | 15 | 3ad2ant1 | |- ( ( K e. HL /\ X e. B /\ Q e. A ) -> K e. AtLat ) |
| 17 | eqid | |- ( 0. ` K ) = ( 0. ` K ) |
|
| 18 | 17 4 | pmap0 | |- ( K e. AtLat -> ( M ` ( 0. ` K ) ) = (/) ) |
| 19 | 16 18 | syl | |- ( ( K e. HL /\ X e. B /\ Q e. A ) -> ( M ` ( 0. ` K ) ) = (/) ) |
| 20 | 14 19 | sylan9eqr | |- ( ( ( K e. HL /\ X e. B /\ Q e. A ) /\ X = ( 0. ` K ) ) -> ( M ` X ) = (/) ) |
| 21 | 20 | oveq1d | |- ( ( ( K e. HL /\ X e. B /\ Q e. A ) /\ X = ( 0. ` K ) ) -> ( ( M ` X ) .+ ( M ` Q ) ) = ( (/) .+ ( M ` Q ) ) ) |
| 22 | oveq1 | |- ( X = ( 0. ` K ) -> ( X .\/ Q ) = ( ( 0. ` K ) .\/ Q ) ) |
|
| 23 | hlol | |- ( K e. HL -> K e. OL ) |
|
| 24 | 23 | 3ad2ant1 | |- ( ( K e. HL /\ X e. B /\ Q e. A ) -> K e. OL ) |
| 25 | 1 2 17 | olj02 | |- ( ( K e. OL /\ Q e. B ) -> ( ( 0. ` K ) .\/ Q ) = Q ) |
| 26 | 24 8 25 | syl2anc | |- ( ( K e. HL /\ X e. B /\ Q e. A ) -> ( ( 0. ` K ) .\/ Q ) = Q ) |
| 27 | 22 26 | sylan9eqr | |- ( ( ( K e. HL /\ X e. B /\ Q e. A ) /\ X = ( 0. ` K ) ) -> ( X .\/ Q ) = Q ) |
| 28 | 27 | fveq2d | |- ( ( ( K e. HL /\ X e. B /\ Q e. A ) /\ X = ( 0. ` K ) ) -> ( M ` ( X .\/ Q ) ) = ( M ` Q ) ) |
| 29 | 13 21 28 | 3eqtr4rd | |- ( ( ( K e. HL /\ X e. B /\ Q e. A ) /\ X = ( 0. ` K ) ) -> ( M ` ( X .\/ Q ) ) = ( ( M ` X ) .+ ( M ` Q ) ) ) |
| 30 | simpll1 | |- ( ( ( ( K e. HL /\ X e. B /\ Q e. A ) /\ X =/= ( 0. ` K ) ) /\ p e. A ) -> K e. HL ) |
|
| 31 | 30 | adantr | |- ( ( ( ( ( K e. HL /\ X e. B /\ Q e. A ) /\ X =/= ( 0. ` K ) ) /\ p e. A ) /\ p ( le ` K ) ( X .\/ Q ) ) -> K e. HL ) |
| 32 | simpll2 | |- ( ( ( ( K e. HL /\ X e. B /\ Q e. A ) /\ X =/= ( 0. ` K ) ) /\ p e. A ) -> X e. B ) |
|
| 33 | 32 | adantr | |- ( ( ( ( ( K e. HL /\ X e. B /\ Q e. A ) /\ X =/= ( 0. ` K ) ) /\ p e. A ) /\ p ( le ` K ) ( X .\/ Q ) ) -> X e. B ) |
| 34 | simplr | |- ( ( ( ( ( K e. HL /\ X e. B /\ Q e. A ) /\ X =/= ( 0. ` K ) ) /\ p e. A ) /\ p ( le ` K ) ( X .\/ Q ) ) -> p e. A ) |
|
| 35 | simpll3 | |- ( ( ( ( K e. HL /\ X e. B /\ Q e. A ) /\ X =/= ( 0. ` K ) ) /\ p e. A ) -> Q e. A ) |
|
| 36 | 35 | adantr | |- ( ( ( ( ( K e. HL /\ X e. B /\ Q e. A ) /\ X =/= ( 0. ` K ) ) /\ p e. A ) /\ p ( le ` K ) ( X .\/ Q ) ) -> Q e. A ) |
| 37 | 33 34 36 | 3jca | |- ( ( ( ( ( K e. HL /\ X e. B /\ Q e. A ) /\ X =/= ( 0. ` K ) ) /\ p e. A ) /\ p ( le ` K ) ( X .\/ Q ) ) -> ( X e. B /\ p e. A /\ Q e. A ) ) |
| 38 | simpllr | |- ( ( ( ( ( K e. HL /\ X e. B /\ Q e. A ) /\ X =/= ( 0. ` K ) ) /\ p e. A ) /\ p ( le ` K ) ( X .\/ Q ) ) -> X =/= ( 0. ` K ) ) |
|
| 39 | simpr | |- ( ( ( ( ( K e. HL /\ X e. B /\ Q e. A ) /\ X =/= ( 0. ` K ) ) /\ p e. A ) /\ p ( le ` K ) ( X .\/ Q ) ) -> p ( le ` K ) ( X .\/ Q ) ) |
|
| 40 | eqid | |- ( le ` K ) = ( le ` K ) |
|
| 41 | 1 40 2 17 3 | cvrat42 | |- ( ( K e. HL /\ ( X e. B /\ p e. A /\ Q e. A ) ) -> ( ( X =/= ( 0. ` K ) /\ p ( le ` K ) ( X .\/ Q ) ) -> E. q e. A ( q ( le ` K ) X /\ p ( le ` K ) ( q .\/ Q ) ) ) ) |
| 42 | 41 | imp | |- ( ( ( K e. HL /\ ( X e. B /\ p e. A /\ Q e. A ) ) /\ ( X =/= ( 0. ` K ) /\ p ( le ` K ) ( X .\/ Q ) ) ) -> E. q e. A ( q ( le ` K ) X /\ p ( le ` K ) ( q .\/ Q ) ) ) |
| 43 | 31 37 38 39 42 | syl22anc | |- ( ( ( ( ( K e. HL /\ X e. B /\ Q e. A ) /\ X =/= ( 0. ` K ) ) /\ p e. A ) /\ p ( le ` K ) ( X .\/ Q ) ) -> E. q e. A ( q ( le ` K ) X /\ p ( le ` K ) ( q .\/ Q ) ) ) |
| 44 | 43 | ex | |- ( ( ( ( K e. HL /\ X e. B /\ Q e. A ) /\ X =/= ( 0. ` K ) ) /\ p e. A ) -> ( p ( le ` K ) ( X .\/ Q ) -> E. q e. A ( q ( le ` K ) X /\ p ( le ` K ) ( q .\/ Q ) ) ) ) |
| 45 | 1 40 3 4 | elpmap | |- ( ( K e. HL /\ X e. B ) -> ( q e. ( M ` X ) <-> ( q e. A /\ q ( le ` K ) X ) ) ) |
| 46 | 45 | 3adant3 | |- ( ( K e. HL /\ X e. B /\ Q e. A ) -> ( q e. ( M ` X ) <-> ( q e. A /\ q ( le ` K ) X ) ) ) |
| 47 | df-rex | |- ( E. r e. ( M ` Q ) p ( le ` K ) ( q .\/ r ) <-> E. r ( r e. ( M ` Q ) /\ p ( le ` K ) ( q .\/ r ) ) ) |
|
| 48 | 3 4 | elpmapat | |- ( ( K e. HL /\ Q e. A ) -> ( r e. ( M ` Q ) <-> r = Q ) ) |
| 49 | 48 | 3adant2 | |- ( ( K e. HL /\ X e. B /\ Q e. A ) -> ( r e. ( M ` Q ) <-> r = Q ) ) |
| 50 | 49 | anbi1d | |- ( ( K e. HL /\ X e. B /\ Q e. A ) -> ( ( r e. ( M ` Q ) /\ p ( le ` K ) ( q .\/ r ) ) <-> ( r = Q /\ p ( le ` K ) ( q .\/ r ) ) ) ) |
| 51 | 50 | exbidv | |- ( ( K e. HL /\ X e. B /\ Q e. A ) -> ( E. r ( r e. ( M ` Q ) /\ p ( le ` K ) ( q .\/ r ) ) <-> E. r ( r = Q /\ p ( le ` K ) ( q .\/ r ) ) ) ) |
| 52 | 47 51 | bitr2id | |- ( ( K e. HL /\ X e. B /\ Q e. A ) -> ( E. r ( r = Q /\ p ( le ` K ) ( q .\/ r ) ) <-> E. r e. ( M ` Q ) p ( le ` K ) ( q .\/ r ) ) ) |
| 53 | oveq2 | |- ( r = Q -> ( q .\/ r ) = ( q .\/ Q ) ) |
|
| 54 | 53 | breq2d | |- ( r = Q -> ( p ( le ` K ) ( q .\/ r ) <-> p ( le ` K ) ( q .\/ Q ) ) ) |
| 55 | 54 | ceqsexgv | |- ( Q e. A -> ( E. r ( r = Q /\ p ( le ` K ) ( q .\/ r ) ) <-> p ( le ` K ) ( q .\/ Q ) ) ) |
| 56 | 55 | 3ad2ant3 | |- ( ( K e. HL /\ X e. B /\ Q e. A ) -> ( E. r ( r = Q /\ p ( le ` K ) ( q .\/ r ) ) <-> p ( le ` K ) ( q .\/ Q ) ) ) |
| 57 | 52 56 | bitr3d | |- ( ( K e. HL /\ X e. B /\ Q e. A ) -> ( E. r e. ( M ` Q ) p ( le ` K ) ( q .\/ r ) <-> p ( le ` K ) ( q .\/ Q ) ) ) |
| 58 | 46 57 | anbi12d | |- ( ( K e. HL /\ X e. B /\ Q e. A ) -> ( ( q e. ( M ` X ) /\ E. r e. ( M ` Q ) p ( le ` K ) ( q .\/ r ) ) <-> ( ( q e. A /\ q ( le ` K ) X ) /\ p ( le ` K ) ( q .\/ Q ) ) ) ) |
| 59 | anass | |- ( ( ( q e. A /\ q ( le ` K ) X ) /\ p ( le ` K ) ( q .\/ Q ) ) <-> ( q e. A /\ ( q ( le ` K ) X /\ p ( le ` K ) ( q .\/ Q ) ) ) ) |
|
| 60 | 58 59 | bitrdi | |- ( ( K e. HL /\ X e. B /\ Q e. A ) -> ( ( q e. ( M ` X ) /\ E. r e. ( M ` Q ) p ( le ` K ) ( q .\/ r ) ) <-> ( q e. A /\ ( q ( le ` K ) X /\ p ( le ` K ) ( q .\/ Q ) ) ) ) ) |
| 61 | 60 | rexbidv2 | |- ( ( K e. HL /\ X e. B /\ Q e. A ) -> ( E. q e. ( M ` X ) E. r e. ( M ` Q ) p ( le ` K ) ( q .\/ r ) <-> E. q e. A ( q ( le ` K ) X /\ p ( le ` K ) ( q .\/ Q ) ) ) ) |
| 62 | 61 | ad2antrr | |- ( ( ( ( K e. HL /\ X e. B /\ Q e. A ) /\ X =/= ( 0. ` K ) ) /\ p e. A ) -> ( E. q e. ( M ` X ) E. r e. ( M ` Q ) p ( le ` K ) ( q .\/ r ) <-> E. q e. A ( q ( le ` K ) X /\ p ( le ` K ) ( q .\/ Q ) ) ) ) |
| 63 | 44 62 | sylibrd | |- ( ( ( ( K e. HL /\ X e. B /\ Q e. A ) /\ X =/= ( 0. ` K ) ) /\ p e. A ) -> ( p ( le ` K ) ( X .\/ Q ) -> E. q e. ( M ` X ) E. r e. ( M ` Q ) p ( le ` K ) ( q .\/ r ) ) ) |
| 64 | 63 | imdistanda | |- ( ( ( K e. HL /\ X e. B /\ Q e. A ) /\ X =/= ( 0. ` K ) ) -> ( ( p e. A /\ p ( le ` K ) ( X .\/ Q ) ) -> ( p e. A /\ E. q e. ( M ` X ) E. r e. ( M ` Q ) p ( le ` K ) ( q .\/ r ) ) ) ) |
| 65 | hllat | |- ( K e. HL -> K e. Lat ) |
|
| 66 | 65 | 3ad2ant1 | |- ( ( K e. HL /\ X e. B /\ Q e. A ) -> K e. Lat ) |
| 67 | simp2 | |- ( ( K e. HL /\ X e. B /\ Q e. A ) -> X e. B ) |
|
| 68 | 1 2 | latjcl | |- ( ( K e. Lat /\ X e. B /\ Q e. B ) -> ( X .\/ Q ) e. B ) |
| 69 | 66 67 8 68 | syl3anc | |- ( ( K e. HL /\ X e. B /\ Q e. A ) -> ( X .\/ Q ) e. B ) |
| 70 | 1 40 3 4 | elpmap | |- ( ( K e. HL /\ ( X .\/ Q ) e. B ) -> ( p e. ( M ` ( X .\/ Q ) ) <-> ( p e. A /\ p ( le ` K ) ( X .\/ Q ) ) ) ) |
| 71 | 6 69 70 | syl2anc | |- ( ( K e. HL /\ X e. B /\ Q e. A ) -> ( p e. ( M ` ( X .\/ Q ) ) <-> ( p e. A /\ p ( le ` K ) ( X .\/ Q ) ) ) ) |
| 72 | 71 | adantr | |- ( ( ( K e. HL /\ X e. B /\ Q e. A ) /\ X =/= ( 0. ` K ) ) -> ( p e. ( M ` ( X .\/ Q ) ) <-> ( p e. A /\ p ( le ` K ) ( X .\/ Q ) ) ) ) |
| 73 | 1 3 4 | pmapssat | |- ( ( K e. HL /\ X e. B ) -> ( M ` X ) C_ A ) |
| 74 | 73 | 3adant3 | |- ( ( K e. HL /\ X e. B /\ Q e. A ) -> ( M ` X ) C_ A ) |
| 75 | 66 74 10 | 3jca | |- ( ( K e. HL /\ X e. B /\ Q e. A ) -> ( K e. Lat /\ ( M ` X ) C_ A /\ ( M ` Q ) C_ A ) ) |
| 76 | 75 | adantr | |- ( ( ( K e. HL /\ X e. B /\ Q e. A ) /\ X =/= ( 0. ` K ) ) -> ( K e. Lat /\ ( M ` X ) C_ A /\ ( M ` Q ) C_ A ) ) |
| 77 | 1 17 4 | pmapeq0 | |- ( ( K e. HL /\ X e. B ) -> ( ( M ` X ) = (/) <-> X = ( 0. ` K ) ) ) |
| 78 | 77 | 3adant3 | |- ( ( K e. HL /\ X e. B /\ Q e. A ) -> ( ( M ` X ) = (/) <-> X = ( 0. ` K ) ) ) |
| 79 | 78 | necon3bid | |- ( ( K e. HL /\ X e. B /\ Q e. A ) -> ( ( M ` X ) =/= (/) <-> X =/= ( 0. ` K ) ) ) |
| 80 | 79 | biimpar | |- ( ( ( K e. HL /\ X e. B /\ Q e. A ) /\ X =/= ( 0. ` K ) ) -> ( M ` X ) =/= (/) ) |
| 81 | simp3 | |- ( ( K e. HL /\ X e. B /\ Q e. A ) -> Q e. A ) |
|
| 82 | 17 3 | atn0 | |- ( ( K e. AtLat /\ Q e. A ) -> Q =/= ( 0. ` K ) ) |
| 83 | 16 81 82 | syl2anc | |- ( ( K e. HL /\ X e. B /\ Q e. A ) -> Q =/= ( 0. ` K ) ) |
| 84 | 1 17 4 | pmapeq0 | |- ( ( K e. HL /\ Q e. B ) -> ( ( M ` Q ) = (/) <-> Q = ( 0. ` K ) ) ) |
| 85 | 6 8 84 | syl2anc | |- ( ( K e. HL /\ X e. B /\ Q e. A ) -> ( ( M ` Q ) = (/) <-> Q = ( 0. ` K ) ) ) |
| 86 | 85 | necon3bid | |- ( ( K e. HL /\ X e. B /\ Q e. A ) -> ( ( M ` Q ) =/= (/) <-> Q =/= ( 0. ` K ) ) ) |
| 87 | 83 86 | mpbird | |- ( ( K e. HL /\ X e. B /\ Q e. A ) -> ( M ` Q ) =/= (/) ) |
| 88 | 87 | adantr | |- ( ( ( K e. HL /\ X e. B /\ Q e. A ) /\ X =/= ( 0. ` K ) ) -> ( M ` Q ) =/= (/) ) |
| 89 | 40 2 3 5 | elpaddn0 | |- ( ( ( K e. Lat /\ ( M ` X ) C_ A /\ ( M ` Q ) C_ A ) /\ ( ( M ` X ) =/= (/) /\ ( M ` Q ) =/= (/) ) ) -> ( p e. ( ( M ` X ) .+ ( M ` Q ) ) <-> ( p e. A /\ E. q e. ( M ` X ) E. r e. ( M ` Q ) p ( le ` K ) ( q .\/ r ) ) ) ) |
| 90 | 76 80 88 89 | syl12anc | |- ( ( ( K e. HL /\ X e. B /\ Q e. A ) /\ X =/= ( 0. ` K ) ) -> ( p e. ( ( M ` X ) .+ ( M ` Q ) ) <-> ( p e. A /\ E. q e. ( M ` X ) E. r e. ( M ` Q ) p ( le ` K ) ( q .\/ r ) ) ) ) |
| 91 | 64 72 90 | 3imtr4d | |- ( ( ( K e. HL /\ X e. B /\ Q e. A ) /\ X =/= ( 0. ` K ) ) -> ( p e. ( M ` ( X .\/ Q ) ) -> p e. ( ( M ` X ) .+ ( M ` Q ) ) ) ) |
| 92 | 91 | ssrdv | |- ( ( ( K e. HL /\ X e. B /\ Q e. A ) /\ X =/= ( 0. ` K ) ) -> ( M ` ( X .\/ Q ) ) C_ ( ( M ` X ) .+ ( M ` Q ) ) ) |
| 93 | 1 2 4 5 | pmapjoin | |- ( ( K e. Lat /\ X e. B /\ Q e. B ) -> ( ( M ` X ) .+ ( M ` Q ) ) C_ ( M ` ( X .\/ Q ) ) ) |
| 94 | 66 67 8 93 | syl3anc | |- ( ( K e. HL /\ X e. B /\ Q e. A ) -> ( ( M ` X ) .+ ( M ` Q ) ) C_ ( M ` ( X .\/ Q ) ) ) |
| 95 | 94 | adantr | |- ( ( ( K e. HL /\ X e. B /\ Q e. A ) /\ X =/= ( 0. ` K ) ) -> ( ( M ` X ) .+ ( M ` Q ) ) C_ ( M ` ( X .\/ Q ) ) ) |
| 96 | 92 95 | eqssd | |- ( ( ( K e. HL /\ X e. B /\ Q e. A ) /\ X =/= ( 0. ` K ) ) -> ( M ` ( X .\/ Q ) ) = ( ( M ` X ) .+ ( M ` Q ) ) ) |
| 97 | 29 96 | pm2.61dane | |- ( ( K e. HL /\ X e. B /\ Q e. A ) -> ( M ` ( X .\/ Q ) ) = ( ( M ` X ) .+ ( M ` Q ) ) ) |