This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A projective map value is zero iff its argument is lattice zero. (Contributed by NM, 27-Jan-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmapeq0.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| pmapeq0.z | ⊢ 0 = ( 0. ‘ 𝐾 ) | ||
| pmapeq0.m | ⊢ 𝑀 = ( pmap ‘ 𝐾 ) | ||
| Assertion | pmapeq0 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑀 ‘ 𝑋 ) = ∅ ↔ 𝑋 = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmapeq0.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | pmapeq0.z | ⊢ 0 = ( 0. ‘ 𝐾 ) | |
| 3 | pmapeq0.m | ⊢ 𝑀 = ( pmap ‘ 𝐾 ) | |
| 4 | hlatl | ⊢ ( 𝐾 ∈ HL → 𝐾 ∈ AtLat ) | |
| 5 | 4 | adantr | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) → 𝐾 ∈ AtLat ) |
| 6 | 2 3 | pmap0 | ⊢ ( 𝐾 ∈ AtLat → ( 𝑀 ‘ 0 ) = ∅ ) |
| 7 | 5 6 | syl | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) → ( 𝑀 ‘ 0 ) = ∅ ) |
| 8 | 7 | eqeq2d | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑀 ‘ 𝑋 ) = ( 𝑀 ‘ 0 ) ↔ ( 𝑀 ‘ 𝑋 ) = ∅ ) ) |
| 9 | hlop | ⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OP ) | |
| 10 | 9 | adantr | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) → 𝐾 ∈ OP ) |
| 11 | 1 2 | op0cl | ⊢ ( 𝐾 ∈ OP → 0 ∈ 𝐵 ) |
| 12 | 10 11 | syl | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) → 0 ∈ 𝐵 ) |
| 13 | 1 3 | pmap11 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵 ) → ( ( 𝑀 ‘ 𝑋 ) = ( 𝑀 ‘ 0 ) ↔ 𝑋 = 0 ) ) |
| 14 | 12 13 | mpd3an3 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑀 ‘ 𝑋 ) = ( 𝑀 ‘ 0 ) ↔ 𝑋 = 0 ) ) |
| 15 | 8 14 | bitr3d | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑀 ‘ 𝑋 ) = ∅ ↔ 𝑋 = 0 ) ) |