This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An atom is a member of the lattice base set (i.e. a lattice element). ( atelch analog.) (Contributed by NM, 10-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | atombase.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| atombase.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| Assertion | atbase | ⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atombase.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | atombase.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 3 | n0i | ⊢ ( 𝑃 ∈ 𝐴 → ¬ 𝐴 = ∅ ) | |
| 4 | 2 | eqeq1i | ⊢ ( 𝐴 = ∅ ↔ ( Atoms ‘ 𝐾 ) = ∅ ) |
| 5 | 3 4 | sylnib | ⊢ ( 𝑃 ∈ 𝐴 → ¬ ( Atoms ‘ 𝐾 ) = ∅ ) |
| 6 | fvprc | ⊢ ( ¬ 𝐾 ∈ V → ( Atoms ‘ 𝐾 ) = ∅ ) | |
| 7 | 5 6 | nsyl2 | ⊢ ( 𝑃 ∈ 𝐴 → 𝐾 ∈ V ) |
| 8 | eqid | ⊢ ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 ) | |
| 9 | eqid | ⊢ ( ⋖ ‘ 𝐾 ) = ( ⋖ ‘ 𝐾 ) | |
| 10 | 1 8 9 2 | isat | ⊢ ( 𝐾 ∈ V → ( 𝑃 ∈ 𝐴 ↔ ( 𝑃 ∈ 𝐵 ∧ ( 0. ‘ 𝐾 ) ( ⋖ ‘ 𝐾 ) 𝑃 ) ) ) |
| 11 | 10 | simprbda | ⊢ ( ( 𝐾 ∈ V ∧ 𝑃 ∈ 𝐴 ) → 𝑃 ∈ 𝐵 ) |
| 12 | 7 11 | mpancom | ⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵 ) |