This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The projective map of the join of an atom with a lattice element. (Contributed by NM, 12-May-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmapjat.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| pmapjat.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| pmapjat.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| pmapjat.m | ⊢ 𝑀 = ( pmap ‘ 𝐾 ) | ||
| pmapjat.p | ⊢ + = ( +𝑃 ‘ 𝐾 ) | ||
| Assertion | pmapjat2 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑀 ‘ ( 𝑄 ∨ 𝑋 ) ) = ( ( 𝑀 ‘ 𝑄 ) + ( 𝑀 ‘ 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmapjat.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | pmapjat.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 3 | pmapjat.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 4 | pmapjat.m | ⊢ 𝑀 = ( pmap ‘ 𝐾 ) | |
| 5 | pmapjat.p | ⊢ + = ( +𝑃 ‘ 𝐾 ) | |
| 6 | 1 2 3 4 5 | pmapjat1 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑀 ‘ ( 𝑋 ∨ 𝑄 ) ) = ( ( 𝑀 ‘ 𝑋 ) + ( 𝑀 ‘ 𝑄 ) ) ) |
| 7 | hllat | ⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Lat ) | |
| 8 | 7 | 3ad2ant1 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → 𝐾 ∈ Lat ) |
| 9 | 1 3 | atbase | ⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵 ) |
| 10 | 9 | 3ad2ant3 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → 𝑄 ∈ 𝐵 ) |
| 11 | simp2 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → 𝑋 ∈ 𝐵 ) | |
| 12 | 1 2 | latjcom | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑄 ∨ 𝑋 ) = ( 𝑋 ∨ 𝑄 ) ) |
| 13 | 8 10 11 12 | syl3anc | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑄 ∨ 𝑋 ) = ( 𝑋 ∨ 𝑄 ) ) |
| 14 | 13 | fveq2d | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑀 ‘ ( 𝑄 ∨ 𝑋 ) ) = ( 𝑀 ‘ ( 𝑋 ∨ 𝑄 ) ) ) |
| 15 | simp1 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → 𝐾 ∈ HL ) | |
| 16 | 1 3 4 | pmapssat | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑄 ∈ 𝐵 ) → ( 𝑀 ‘ 𝑄 ) ⊆ 𝐴 ) |
| 17 | 15 10 16 | syl2anc | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑀 ‘ 𝑄 ) ⊆ 𝐴 ) |
| 18 | 1 3 4 | pmapssat | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) → ( 𝑀 ‘ 𝑋 ) ⊆ 𝐴 ) |
| 19 | 18 | 3adant3 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑀 ‘ 𝑋 ) ⊆ 𝐴 ) |
| 20 | 3 5 | paddcom | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑀 ‘ 𝑄 ) ⊆ 𝐴 ∧ ( 𝑀 ‘ 𝑋 ) ⊆ 𝐴 ) → ( ( 𝑀 ‘ 𝑄 ) + ( 𝑀 ‘ 𝑋 ) ) = ( ( 𝑀 ‘ 𝑋 ) + ( 𝑀 ‘ 𝑄 ) ) ) |
| 21 | 8 17 19 20 | syl3anc | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → ( ( 𝑀 ‘ 𝑄 ) + ( 𝑀 ‘ 𝑋 ) ) = ( ( 𝑀 ‘ 𝑋 ) + ( 𝑀 ‘ 𝑄 ) ) ) |
| 22 | 6 14 21 | 3eqtr4d | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑀 ‘ ( 𝑄 ∨ 𝑋 ) ) = ( ( 𝑀 ‘ 𝑄 ) + ( 𝑀 ‘ 𝑋 ) ) ) |