This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The projective map of the join of two lattice elements. Part of Equation 15.5.3 of MaedaMaeda p. 63. (Contributed by NM, 27-Jan-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmapjoin.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| pmapjoin.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| pmapjoin.m | ⊢ 𝑀 = ( pmap ‘ 𝐾 ) | ||
| pmapjoin.p | ⊢ + = ( +𝑃 ‘ 𝐾 ) | ||
| Assertion | pmapjoin | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑀 ‘ 𝑋 ) + ( 𝑀 ‘ 𝑌 ) ) ⊆ ( 𝑀 ‘ ( 𝑋 ∨ 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmapjoin.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | pmapjoin.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 3 | pmapjoin.m | ⊢ 𝑀 = ( pmap ‘ 𝐾 ) | |
| 4 | pmapjoin.p | ⊢ + = ( +𝑃 ‘ 𝐾 ) | |
| 5 | simpl | ⊢ ( ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑝 ( le ‘ 𝐾 ) 𝑋 ) → 𝑝 ∈ ( Atoms ‘ 𝐾 ) ) | |
| 6 | 5 | a1i | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑝 ( le ‘ 𝐾 ) 𝑋 ) → 𝑝 ∈ ( Atoms ‘ 𝐾 ) ) ) |
| 7 | eqid | ⊢ ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 ) | |
| 8 | 1 7 | atbase | ⊢ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) → 𝑝 ∈ 𝐵 ) |
| 9 | eqid | ⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) | |
| 10 | 1 9 2 | latlej1 | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑌 ) ) |
| 11 | 10 | adantr | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐵 ) → 𝑋 ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑌 ) ) |
| 12 | simpl1 | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐵 ) → 𝐾 ∈ Lat ) | |
| 13 | simpr | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐵 ) → 𝑝 ∈ 𝐵 ) | |
| 14 | simpl2 | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) | |
| 15 | 1 2 | latjcl | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∨ 𝑌 ) ∈ 𝐵 ) |
| 16 | 15 | adantr | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐵 ) → ( 𝑋 ∨ 𝑌 ) ∈ 𝐵 ) |
| 17 | 1 9 | lattr | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ ( 𝑋 ∨ 𝑌 ) ∈ 𝐵 ) ) → ( ( 𝑝 ( le ‘ 𝐾 ) 𝑋 ∧ 𝑋 ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑌 ) ) → 𝑝 ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑌 ) ) ) |
| 18 | 12 13 14 16 17 | syl13anc | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐵 ) → ( ( 𝑝 ( le ‘ 𝐾 ) 𝑋 ∧ 𝑋 ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑌 ) ) → 𝑝 ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑌 ) ) ) |
| 19 | 11 18 | mpan2d | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐵 ) → ( 𝑝 ( le ‘ 𝐾 ) 𝑋 → 𝑝 ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑌 ) ) ) |
| 20 | 19 | expimpd | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑝 ∈ 𝐵 ∧ 𝑝 ( le ‘ 𝐾 ) 𝑋 ) → 𝑝 ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑌 ) ) ) |
| 21 | 8 20 | sylani | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑝 ( le ‘ 𝐾 ) 𝑋 ) → 𝑝 ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑌 ) ) ) |
| 22 | 6 21 | jcad | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑝 ( le ‘ 𝐾 ) 𝑋 ) → ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑝 ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑌 ) ) ) ) |
| 23 | simpl | ⊢ ( ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑝 ( le ‘ 𝐾 ) 𝑌 ) → 𝑝 ∈ ( Atoms ‘ 𝐾 ) ) | |
| 24 | 23 | a1i | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑝 ( le ‘ 𝐾 ) 𝑌 ) → 𝑝 ∈ ( Atoms ‘ 𝐾 ) ) ) |
| 25 | 1 9 2 | latlej2 | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑌 ) ) |
| 26 | 25 | adantr | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐵 ) → 𝑌 ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑌 ) ) |
| 27 | simpl3 | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐵 ) → 𝑌 ∈ 𝐵 ) | |
| 28 | 1 9 | lattr | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ( 𝑋 ∨ 𝑌 ) ∈ 𝐵 ) ) → ( ( 𝑝 ( le ‘ 𝐾 ) 𝑌 ∧ 𝑌 ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑌 ) ) → 𝑝 ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑌 ) ) ) |
| 29 | 12 13 27 16 28 | syl13anc | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐵 ) → ( ( 𝑝 ( le ‘ 𝐾 ) 𝑌 ∧ 𝑌 ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑌 ) ) → 𝑝 ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑌 ) ) ) |
| 30 | 26 29 | mpan2d | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐵 ) → ( 𝑝 ( le ‘ 𝐾 ) 𝑌 → 𝑝 ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑌 ) ) ) |
| 31 | 30 | expimpd | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑝 ∈ 𝐵 ∧ 𝑝 ( le ‘ 𝐾 ) 𝑌 ) → 𝑝 ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑌 ) ) ) |
| 32 | 8 31 | sylani | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑝 ( le ‘ 𝐾 ) 𝑌 ) → 𝑝 ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑌 ) ) ) |
| 33 | 24 32 | jcad | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑝 ( le ‘ 𝐾 ) 𝑌 ) → ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑝 ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑌 ) ) ) ) |
| 34 | 22 33 | jaod | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑝 ( le ‘ 𝐾 ) 𝑋 ) ∨ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑝 ( le ‘ 𝐾 ) 𝑌 ) ) → ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑝 ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑌 ) ) ) ) |
| 35 | simpl | ⊢ ( ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ∃ 𝑞 ∈ ( 𝑀 ‘ 𝑋 ) ∃ 𝑟 ∈ ( 𝑀 ‘ 𝑌 ) 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑟 ) ) → 𝑝 ∈ ( Atoms ‘ 𝐾 ) ) | |
| 36 | 35 | a1i | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ∃ 𝑞 ∈ ( 𝑀 ‘ 𝑋 ) ∃ 𝑟 ∈ ( 𝑀 ‘ 𝑌 ) 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑟 ) ) → 𝑝 ∈ ( Atoms ‘ 𝐾 ) ) ) |
| 37 | 1 9 7 3 | elpmap | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ) → ( 𝑞 ∈ ( 𝑀 ‘ 𝑋 ) ↔ ( 𝑞 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ( le ‘ 𝐾 ) 𝑋 ) ) ) |
| 38 | 37 | 3adant3 | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑞 ∈ ( 𝑀 ‘ 𝑋 ) ↔ ( 𝑞 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ( le ‘ 𝐾 ) 𝑋 ) ) ) |
| 39 | 1 9 7 3 | elpmap | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ) → ( 𝑟 ∈ ( 𝑀 ‘ 𝑌 ) ↔ ( 𝑟 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑟 ( le ‘ 𝐾 ) 𝑌 ) ) ) |
| 40 | 39 | 3adant2 | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑟 ∈ ( 𝑀 ‘ 𝑌 ) ↔ ( 𝑟 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑟 ( le ‘ 𝐾 ) 𝑌 ) ) ) |
| 41 | 38 40 | anbi12d | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑞 ∈ ( 𝑀 ‘ 𝑋 ) ∧ 𝑟 ∈ ( 𝑀 ‘ 𝑌 ) ) ↔ ( ( 𝑞 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ( le ‘ 𝐾 ) 𝑋 ) ∧ ( 𝑟 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑟 ( le ‘ 𝐾 ) 𝑌 ) ) ) ) |
| 42 | an4 | ⊢ ( ( ( 𝑞 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ( le ‘ 𝐾 ) 𝑋 ) ∧ ( 𝑟 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑟 ( le ‘ 𝐾 ) 𝑌 ) ) ↔ ( ( 𝑞 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑟 ∈ ( Atoms ‘ 𝐾 ) ) ∧ ( 𝑞 ( le ‘ 𝐾 ) 𝑋 ∧ 𝑟 ( le ‘ 𝐾 ) 𝑌 ) ) ) | |
| 43 | 41 42 | bitrdi | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑞 ∈ ( 𝑀 ‘ 𝑋 ) ∧ 𝑟 ∈ ( 𝑀 ‘ 𝑌 ) ) ↔ ( ( 𝑞 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑟 ∈ ( Atoms ‘ 𝐾 ) ) ∧ ( 𝑞 ( le ‘ 𝐾 ) 𝑋 ∧ 𝑟 ( le ‘ 𝐾 ) 𝑌 ) ) ) ) |
| 44 | 43 | adantr | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐵 ) → ( ( 𝑞 ∈ ( 𝑀 ‘ 𝑋 ) ∧ 𝑟 ∈ ( 𝑀 ‘ 𝑌 ) ) ↔ ( ( 𝑞 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑟 ∈ ( Atoms ‘ 𝐾 ) ) ∧ ( 𝑞 ( le ‘ 𝐾 ) 𝑋 ∧ 𝑟 ( le ‘ 𝐾 ) 𝑌 ) ) ) ) |
| 45 | 1 7 | atbase | ⊢ ( 𝑞 ∈ ( Atoms ‘ 𝐾 ) → 𝑞 ∈ 𝐵 ) |
| 46 | 1 7 | atbase | ⊢ ( 𝑟 ∈ ( Atoms ‘ 𝐾 ) → 𝑟 ∈ 𝐵 ) |
| 47 | 45 46 | anim12i | ⊢ ( ( 𝑞 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑟 ∈ ( Atoms ‘ 𝐾 ) ) → ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) |
| 48 | simpll1 | ⊢ ( ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐵 ) ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → 𝐾 ∈ Lat ) | |
| 49 | simprl | ⊢ ( ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐵 ) ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → 𝑞 ∈ 𝐵 ) | |
| 50 | simpll2 | ⊢ ( ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐵 ) ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐵 ) | |
| 51 | simprr | ⊢ ( ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐵 ) ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → 𝑟 ∈ 𝐵 ) | |
| 52 | simpll3 | ⊢ ( ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐵 ) ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → 𝑌 ∈ 𝐵 ) | |
| 53 | 1 9 2 | latjlej12 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑟 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝑞 ( le ‘ 𝐾 ) 𝑋 ∧ 𝑟 ( le ‘ 𝐾 ) 𝑌 ) → ( 𝑞 ∨ 𝑟 ) ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑌 ) ) ) |
| 54 | 48 49 50 51 52 53 | syl122anc | ⊢ ( ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐵 ) ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( ( 𝑞 ( le ‘ 𝐾 ) 𝑋 ∧ 𝑟 ( le ‘ 𝐾 ) 𝑌 ) → ( 𝑞 ∨ 𝑟 ) ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑌 ) ) ) |
| 55 | simplr | ⊢ ( ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐵 ) ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → 𝑝 ∈ 𝐵 ) | |
| 56 | 1 2 | latjcl | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) → ( 𝑞 ∨ 𝑟 ) ∈ 𝐵 ) |
| 57 | 48 49 51 56 | syl3anc | ⊢ ( ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐵 ) ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( 𝑞 ∨ 𝑟 ) ∈ 𝐵 ) |
| 58 | 15 | ad2antrr | ⊢ ( ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐵 ) ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( 𝑋 ∨ 𝑌 ) ∈ 𝐵 ) |
| 59 | 1 9 | lattr | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑝 ∈ 𝐵 ∧ ( 𝑞 ∨ 𝑟 ) ∈ 𝐵 ∧ ( 𝑋 ∨ 𝑌 ) ∈ 𝐵 ) ) → ( ( 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑟 ) ∧ ( 𝑞 ∨ 𝑟 ) ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑌 ) ) → 𝑝 ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑌 ) ) ) |
| 60 | 48 55 57 58 59 | syl13anc | ⊢ ( ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐵 ) ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( ( 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑟 ) ∧ ( 𝑞 ∨ 𝑟 ) ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑌 ) ) → 𝑝 ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑌 ) ) ) |
| 61 | 60 | expcomd | ⊢ ( ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐵 ) ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( ( 𝑞 ∨ 𝑟 ) ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑌 ) → ( 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑟 ) → 𝑝 ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑌 ) ) ) ) |
| 62 | 54 61 | syld | ⊢ ( ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐵 ) ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( ( 𝑞 ( le ‘ 𝐾 ) 𝑋 ∧ 𝑟 ( le ‘ 𝐾 ) 𝑌 ) → ( 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑟 ) → 𝑝 ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑌 ) ) ) ) |
| 63 | 62 | expimpd | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐵 ) → ( ( ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ∧ ( 𝑞 ( le ‘ 𝐾 ) 𝑋 ∧ 𝑟 ( le ‘ 𝐾 ) 𝑌 ) ) → ( 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑟 ) → 𝑝 ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑌 ) ) ) ) |
| 64 | 47 63 | sylani | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐵 ) → ( ( ( 𝑞 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑟 ∈ ( Atoms ‘ 𝐾 ) ) ∧ ( 𝑞 ( le ‘ 𝐾 ) 𝑋 ∧ 𝑟 ( le ‘ 𝐾 ) 𝑌 ) ) → ( 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑟 ) → 𝑝 ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑌 ) ) ) ) |
| 65 | 44 64 | sylbid | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐵 ) → ( ( 𝑞 ∈ ( 𝑀 ‘ 𝑋 ) ∧ 𝑟 ∈ ( 𝑀 ‘ 𝑌 ) ) → ( 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑟 ) → 𝑝 ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑌 ) ) ) ) |
| 66 | 65 | rexlimdvv | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐵 ) → ( ∃ 𝑞 ∈ ( 𝑀 ‘ 𝑋 ) ∃ 𝑟 ∈ ( 𝑀 ‘ 𝑌 ) 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑟 ) → 𝑝 ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑌 ) ) ) |
| 67 | 66 | expimpd | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑝 ∈ 𝐵 ∧ ∃ 𝑞 ∈ ( 𝑀 ‘ 𝑋 ) ∃ 𝑟 ∈ ( 𝑀 ‘ 𝑌 ) 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑟 ) ) → 𝑝 ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑌 ) ) ) |
| 68 | 8 67 | sylani | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ∃ 𝑞 ∈ ( 𝑀 ‘ 𝑋 ) ∃ 𝑟 ∈ ( 𝑀 ‘ 𝑌 ) 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑟 ) ) → 𝑝 ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑌 ) ) ) |
| 69 | 36 68 | jcad | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ∃ 𝑞 ∈ ( 𝑀 ‘ 𝑋 ) ∃ 𝑟 ∈ ( 𝑀 ‘ 𝑌 ) 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑟 ) ) → ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑝 ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑌 ) ) ) ) |
| 70 | 34 69 | jaod | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ( ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑝 ( le ‘ 𝐾 ) 𝑋 ) ∨ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑝 ( le ‘ 𝐾 ) 𝑌 ) ) ∨ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ∃ 𝑞 ∈ ( 𝑀 ‘ 𝑋 ) ∃ 𝑟 ∈ ( 𝑀 ‘ 𝑌 ) 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑟 ) ) ) → ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑝 ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑌 ) ) ) ) |
| 71 | simp1 | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝐾 ∈ Lat ) | |
| 72 | 1 7 3 | pmapssat | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ) → ( 𝑀 ‘ 𝑋 ) ⊆ ( Atoms ‘ 𝐾 ) ) |
| 73 | 72 | 3adant3 | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑀 ‘ 𝑋 ) ⊆ ( Atoms ‘ 𝐾 ) ) |
| 74 | 1 7 3 | pmapssat | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ) → ( 𝑀 ‘ 𝑌 ) ⊆ ( Atoms ‘ 𝐾 ) ) |
| 75 | 74 | 3adant2 | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑀 ‘ 𝑌 ) ⊆ ( Atoms ‘ 𝐾 ) ) |
| 76 | 9 2 7 4 | elpadd | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑀 ‘ 𝑋 ) ⊆ ( Atoms ‘ 𝐾 ) ∧ ( 𝑀 ‘ 𝑌 ) ⊆ ( Atoms ‘ 𝐾 ) ) → ( 𝑝 ∈ ( ( 𝑀 ‘ 𝑋 ) + ( 𝑀 ‘ 𝑌 ) ) ↔ ( ( 𝑝 ∈ ( 𝑀 ‘ 𝑋 ) ∨ 𝑝 ∈ ( 𝑀 ‘ 𝑌 ) ) ∨ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ∃ 𝑞 ∈ ( 𝑀 ‘ 𝑋 ) ∃ 𝑟 ∈ ( 𝑀 ‘ 𝑌 ) 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑟 ) ) ) ) ) |
| 77 | 71 73 75 76 | syl3anc | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑝 ∈ ( ( 𝑀 ‘ 𝑋 ) + ( 𝑀 ‘ 𝑌 ) ) ↔ ( ( 𝑝 ∈ ( 𝑀 ‘ 𝑋 ) ∨ 𝑝 ∈ ( 𝑀 ‘ 𝑌 ) ) ∨ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ∃ 𝑞 ∈ ( 𝑀 ‘ 𝑋 ) ∃ 𝑟 ∈ ( 𝑀 ‘ 𝑌 ) 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑟 ) ) ) ) ) |
| 78 | 1 9 7 3 | elpmap | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ) → ( 𝑝 ∈ ( 𝑀 ‘ 𝑋 ) ↔ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑝 ( le ‘ 𝐾 ) 𝑋 ) ) ) |
| 79 | 78 | 3adant3 | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑝 ∈ ( 𝑀 ‘ 𝑋 ) ↔ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑝 ( le ‘ 𝐾 ) 𝑋 ) ) ) |
| 80 | 1 9 7 3 | elpmap | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ) → ( 𝑝 ∈ ( 𝑀 ‘ 𝑌 ) ↔ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑝 ( le ‘ 𝐾 ) 𝑌 ) ) ) |
| 81 | 80 | 3adant2 | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑝 ∈ ( 𝑀 ‘ 𝑌 ) ↔ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑝 ( le ‘ 𝐾 ) 𝑌 ) ) ) |
| 82 | 79 81 | orbi12d | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑝 ∈ ( 𝑀 ‘ 𝑋 ) ∨ 𝑝 ∈ ( 𝑀 ‘ 𝑌 ) ) ↔ ( ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑝 ( le ‘ 𝐾 ) 𝑋 ) ∨ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑝 ( le ‘ 𝐾 ) 𝑌 ) ) ) ) |
| 83 | 82 | orbi1d | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ( 𝑝 ∈ ( 𝑀 ‘ 𝑋 ) ∨ 𝑝 ∈ ( 𝑀 ‘ 𝑌 ) ) ∨ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ∃ 𝑞 ∈ ( 𝑀 ‘ 𝑋 ) ∃ 𝑟 ∈ ( 𝑀 ‘ 𝑌 ) 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑟 ) ) ) ↔ ( ( ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑝 ( le ‘ 𝐾 ) 𝑋 ) ∨ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑝 ( le ‘ 𝐾 ) 𝑌 ) ) ∨ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ∃ 𝑞 ∈ ( 𝑀 ‘ 𝑋 ) ∃ 𝑟 ∈ ( 𝑀 ‘ 𝑌 ) 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑟 ) ) ) ) ) |
| 84 | 77 83 | bitrd | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑝 ∈ ( ( 𝑀 ‘ 𝑋 ) + ( 𝑀 ‘ 𝑌 ) ) ↔ ( ( ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑝 ( le ‘ 𝐾 ) 𝑋 ) ∨ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑝 ( le ‘ 𝐾 ) 𝑌 ) ) ∨ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ∃ 𝑞 ∈ ( 𝑀 ‘ 𝑋 ) ∃ 𝑟 ∈ ( 𝑀 ‘ 𝑌 ) 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑟 ) ) ) ) ) |
| 85 | 1 9 7 3 | elpmap | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∨ 𝑌 ) ∈ 𝐵 ) → ( 𝑝 ∈ ( 𝑀 ‘ ( 𝑋 ∨ 𝑌 ) ) ↔ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑝 ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑌 ) ) ) ) |
| 86 | 71 15 85 | syl2anc | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑝 ∈ ( 𝑀 ‘ ( 𝑋 ∨ 𝑌 ) ) ↔ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑝 ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑌 ) ) ) ) |
| 87 | 70 84 86 | 3imtr4d | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑝 ∈ ( ( 𝑀 ‘ 𝑋 ) + ( 𝑀 ‘ 𝑌 ) ) → 𝑝 ∈ ( 𝑀 ‘ ( 𝑋 ∨ 𝑌 ) ) ) ) |
| 88 | 87 | ssrdv | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑀 ‘ 𝑋 ) + ( 𝑀 ‘ 𝑌 ) ) ⊆ ( 𝑀 ‘ ( 𝑋 ∨ 𝑌 ) ) ) |