This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ortholattice element joined with zero equals itself. (Contributed by NM, 28-Jan-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | olj0.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| olj0.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| olj0.z | ⊢ 0 = ( 0. ‘ 𝐾 ) | ||
| Assertion | olj02 | ⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ) → ( 0 ∨ 𝑋 ) = 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | olj0.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | olj0.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 3 | olj0.z | ⊢ 0 = ( 0. ‘ 𝐾 ) | |
| 4 | ollat | ⊢ ( 𝐾 ∈ OL → 𝐾 ∈ Lat ) | |
| 5 | 4 | adantr | ⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ) → 𝐾 ∈ Lat ) |
| 6 | olop | ⊢ ( 𝐾 ∈ OL → 𝐾 ∈ OP ) | |
| 7 | 1 3 | op0cl | ⊢ ( 𝐾 ∈ OP → 0 ∈ 𝐵 ) |
| 8 | 6 7 | syl | ⊢ ( 𝐾 ∈ OL → 0 ∈ 𝐵 ) |
| 9 | 8 | adantr | ⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ) → 0 ∈ 𝐵 ) |
| 10 | simpr | ⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) | |
| 11 | 1 2 | latjcom | ⊢ ( ( 𝐾 ∈ Lat ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 0 ∨ 𝑋 ) = ( 𝑋 ∨ 0 ) ) |
| 12 | 5 9 10 11 | syl3anc | ⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ) → ( 0 ∨ 𝑋 ) = ( 𝑋 ∨ 0 ) ) |
| 13 | 1 2 3 | olj01 | ⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ∨ 0 ) = 𝑋 ) |
| 14 | 12 13 | eqtrd | ⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ) → ( 0 ∨ 𝑋 ) = 𝑋 ) |