This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Member of projective subspace sum of nonempty sets. (Contributed by NM, 3-Jan-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | paddfval.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| paddfval.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| paddfval.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| paddfval.p | ⊢ + = ( +𝑃 ‘ 𝐾 ) | ||
| Assertion | elpaddn0 | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅ ) ) → ( 𝑆 ∈ ( 𝑋 + 𝑌 ) ↔ ( 𝑆 ∈ 𝐴 ∧ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑆 ≤ ( 𝑞 ∨ 𝑟 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | paddfval.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 2 | paddfval.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 3 | paddfval.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 4 | paddfval.p | ⊢ + = ( +𝑃 ‘ 𝐾 ) | |
| 5 | 1 2 3 4 | elpadd | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( 𝑆 ∈ ( 𝑋 + 𝑌 ) ↔ ( ( 𝑆 ∈ 𝑋 ∨ 𝑆 ∈ 𝑌 ) ∨ ( 𝑆 ∈ 𝐴 ∧ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑆 ≤ ( 𝑞 ∨ 𝑟 ) ) ) ) ) |
| 6 | 5 | adantr | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅ ) ) → ( 𝑆 ∈ ( 𝑋 + 𝑌 ) ↔ ( ( 𝑆 ∈ 𝑋 ∨ 𝑆 ∈ 𝑌 ) ∨ ( 𝑆 ∈ 𝐴 ∧ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑆 ≤ ( 𝑞 ∨ 𝑟 ) ) ) ) ) |
| 7 | simpl2 | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅ ) ) → 𝑋 ⊆ 𝐴 ) | |
| 8 | 7 | sseld | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅ ) ) → ( 𝑆 ∈ 𝑋 → 𝑆 ∈ 𝐴 ) ) |
| 9 | simpll1 | ⊢ ( ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑆 ∈ 𝑋 ) ∧ 𝑟 ∈ 𝑌 ) → 𝐾 ∈ Lat ) | |
| 10 | ssel2 | ⊢ ( ( 𝑋 ⊆ 𝐴 ∧ 𝑆 ∈ 𝑋 ) → 𝑆 ∈ 𝐴 ) | |
| 11 | 10 | 3ad2antl2 | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑆 ∈ 𝑋 ) → 𝑆 ∈ 𝐴 ) |
| 12 | 11 | adantr | ⊢ ( ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑆 ∈ 𝑋 ) ∧ 𝑟 ∈ 𝑌 ) → 𝑆 ∈ 𝐴 ) |
| 13 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
| 14 | 13 3 | atbase | ⊢ ( 𝑆 ∈ 𝐴 → 𝑆 ∈ ( Base ‘ 𝐾 ) ) |
| 15 | 12 14 | syl | ⊢ ( ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑆 ∈ 𝑋 ) ∧ 𝑟 ∈ 𝑌 ) → 𝑆 ∈ ( Base ‘ 𝐾 ) ) |
| 16 | simpl3 | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑆 ∈ 𝑋 ) → 𝑌 ⊆ 𝐴 ) | |
| 17 | 16 | sselda | ⊢ ( ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑆 ∈ 𝑋 ) ∧ 𝑟 ∈ 𝑌 ) → 𝑟 ∈ 𝐴 ) |
| 18 | 13 3 | atbase | ⊢ ( 𝑟 ∈ 𝐴 → 𝑟 ∈ ( Base ‘ 𝐾 ) ) |
| 19 | 17 18 | syl | ⊢ ( ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑆 ∈ 𝑋 ) ∧ 𝑟 ∈ 𝑌 ) → 𝑟 ∈ ( Base ‘ 𝐾 ) ) |
| 20 | 13 1 2 | latlej1 | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑆 ∈ ( Base ‘ 𝐾 ) ∧ 𝑟 ∈ ( Base ‘ 𝐾 ) ) → 𝑆 ≤ ( 𝑆 ∨ 𝑟 ) ) |
| 21 | 9 15 19 20 | syl3anc | ⊢ ( ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑆 ∈ 𝑋 ) ∧ 𝑟 ∈ 𝑌 ) → 𝑆 ≤ ( 𝑆 ∨ 𝑟 ) ) |
| 22 | 21 | reximdva0 | ⊢ ( ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑆 ∈ 𝑋 ) ∧ 𝑌 ≠ ∅ ) → ∃ 𝑟 ∈ 𝑌 𝑆 ≤ ( 𝑆 ∨ 𝑟 ) ) |
| 23 | 22 | exp31 | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( 𝑆 ∈ 𝑋 → ( 𝑌 ≠ ∅ → ∃ 𝑟 ∈ 𝑌 𝑆 ≤ ( 𝑆 ∨ 𝑟 ) ) ) ) |
| 24 | 23 | com23 | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( 𝑌 ≠ ∅ → ( 𝑆 ∈ 𝑋 → ∃ 𝑟 ∈ 𝑌 𝑆 ≤ ( 𝑆 ∨ 𝑟 ) ) ) ) |
| 25 | 24 | imp | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑌 ≠ ∅ ) → ( 𝑆 ∈ 𝑋 → ∃ 𝑟 ∈ 𝑌 𝑆 ≤ ( 𝑆 ∨ 𝑟 ) ) ) |
| 26 | 25 | ancld | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑌 ≠ ∅ ) → ( 𝑆 ∈ 𝑋 → ( 𝑆 ∈ 𝑋 ∧ ∃ 𝑟 ∈ 𝑌 𝑆 ≤ ( 𝑆 ∨ 𝑟 ) ) ) ) |
| 27 | oveq1 | ⊢ ( 𝑞 = 𝑆 → ( 𝑞 ∨ 𝑟 ) = ( 𝑆 ∨ 𝑟 ) ) | |
| 28 | 27 | breq2d | ⊢ ( 𝑞 = 𝑆 → ( 𝑆 ≤ ( 𝑞 ∨ 𝑟 ) ↔ 𝑆 ≤ ( 𝑆 ∨ 𝑟 ) ) ) |
| 29 | 28 | rexbidv | ⊢ ( 𝑞 = 𝑆 → ( ∃ 𝑟 ∈ 𝑌 𝑆 ≤ ( 𝑞 ∨ 𝑟 ) ↔ ∃ 𝑟 ∈ 𝑌 𝑆 ≤ ( 𝑆 ∨ 𝑟 ) ) ) |
| 30 | 29 | rspcev | ⊢ ( ( 𝑆 ∈ 𝑋 ∧ ∃ 𝑟 ∈ 𝑌 𝑆 ≤ ( 𝑆 ∨ 𝑟 ) ) → ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑆 ≤ ( 𝑞 ∨ 𝑟 ) ) |
| 31 | 26 30 | syl6 | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑌 ≠ ∅ ) → ( 𝑆 ∈ 𝑋 → ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑆 ≤ ( 𝑞 ∨ 𝑟 ) ) ) |
| 32 | 31 | adantrl | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅ ) ) → ( 𝑆 ∈ 𝑋 → ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑆 ≤ ( 𝑞 ∨ 𝑟 ) ) ) |
| 33 | 8 32 | jcad | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅ ) ) → ( 𝑆 ∈ 𝑋 → ( 𝑆 ∈ 𝐴 ∧ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑆 ≤ ( 𝑞 ∨ 𝑟 ) ) ) ) |
| 34 | simpl3 | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅ ) ) → 𝑌 ⊆ 𝐴 ) | |
| 35 | 34 | sseld | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅ ) ) → ( 𝑆 ∈ 𝑌 → 𝑆 ∈ 𝐴 ) ) |
| 36 | simpll1 | ⊢ ( ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑞 ∈ 𝑋 ) ∧ 𝑆 ∈ 𝑌 ) → 𝐾 ∈ Lat ) | |
| 37 | ssel2 | ⊢ ( ( 𝑋 ⊆ 𝐴 ∧ 𝑞 ∈ 𝑋 ) → 𝑞 ∈ 𝐴 ) | |
| 38 | 37 | 3ad2antl2 | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑞 ∈ 𝑋 ) → 𝑞 ∈ 𝐴 ) |
| 39 | 38 | adantr | ⊢ ( ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑞 ∈ 𝑋 ) ∧ 𝑆 ∈ 𝑌 ) → 𝑞 ∈ 𝐴 ) |
| 40 | 13 3 | atbase | ⊢ ( 𝑞 ∈ 𝐴 → 𝑞 ∈ ( Base ‘ 𝐾 ) ) |
| 41 | 39 40 | syl | ⊢ ( ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑞 ∈ 𝑋 ) ∧ 𝑆 ∈ 𝑌 ) → 𝑞 ∈ ( Base ‘ 𝐾 ) ) |
| 42 | simpl3 | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑞 ∈ 𝑋 ) → 𝑌 ⊆ 𝐴 ) | |
| 43 | 42 | sselda | ⊢ ( ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑞 ∈ 𝑋 ) ∧ 𝑆 ∈ 𝑌 ) → 𝑆 ∈ 𝐴 ) |
| 44 | 43 14 | syl | ⊢ ( ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑞 ∈ 𝑋 ) ∧ 𝑆 ∈ 𝑌 ) → 𝑆 ∈ ( Base ‘ 𝐾 ) ) |
| 45 | 13 1 2 | latlej2 | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑞 ∈ ( Base ‘ 𝐾 ) ∧ 𝑆 ∈ ( Base ‘ 𝐾 ) ) → 𝑆 ≤ ( 𝑞 ∨ 𝑆 ) ) |
| 46 | 36 41 44 45 | syl3anc | ⊢ ( ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑞 ∈ 𝑋 ) ∧ 𝑆 ∈ 𝑌 ) → 𝑆 ≤ ( 𝑞 ∨ 𝑆 ) ) |
| 47 | 46 | ex | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑞 ∈ 𝑋 ) → ( 𝑆 ∈ 𝑌 → 𝑆 ≤ ( 𝑞 ∨ 𝑆 ) ) ) |
| 48 | 47 | ancld | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑞 ∈ 𝑋 ) → ( 𝑆 ∈ 𝑌 → ( 𝑆 ∈ 𝑌 ∧ 𝑆 ≤ ( 𝑞 ∨ 𝑆 ) ) ) ) |
| 49 | oveq2 | ⊢ ( 𝑟 = 𝑆 → ( 𝑞 ∨ 𝑟 ) = ( 𝑞 ∨ 𝑆 ) ) | |
| 50 | 49 | breq2d | ⊢ ( 𝑟 = 𝑆 → ( 𝑆 ≤ ( 𝑞 ∨ 𝑟 ) ↔ 𝑆 ≤ ( 𝑞 ∨ 𝑆 ) ) ) |
| 51 | 50 | rspcev | ⊢ ( ( 𝑆 ∈ 𝑌 ∧ 𝑆 ≤ ( 𝑞 ∨ 𝑆 ) ) → ∃ 𝑟 ∈ 𝑌 𝑆 ≤ ( 𝑞 ∨ 𝑟 ) ) |
| 52 | 48 51 | syl6 | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑞 ∈ 𝑋 ) → ( 𝑆 ∈ 𝑌 → ∃ 𝑟 ∈ 𝑌 𝑆 ≤ ( 𝑞 ∨ 𝑟 ) ) ) |
| 53 | 52 | impancom | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑆 ∈ 𝑌 ) → ( 𝑞 ∈ 𝑋 → ∃ 𝑟 ∈ 𝑌 𝑆 ≤ ( 𝑞 ∨ 𝑟 ) ) ) |
| 54 | 53 | ancld | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑆 ∈ 𝑌 ) → ( 𝑞 ∈ 𝑋 → ( 𝑞 ∈ 𝑋 ∧ ∃ 𝑟 ∈ 𝑌 𝑆 ≤ ( 𝑞 ∨ 𝑟 ) ) ) ) |
| 55 | 54 | eximdv | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑆 ∈ 𝑌 ) → ( ∃ 𝑞 𝑞 ∈ 𝑋 → ∃ 𝑞 ( 𝑞 ∈ 𝑋 ∧ ∃ 𝑟 ∈ 𝑌 𝑆 ≤ ( 𝑞 ∨ 𝑟 ) ) ) ) |
| 56 | n0 | ⊢ ( 𝑋 ≠ ∅ ↔ ∃ 𝑞 𝑞 ∈ 𝑋 ) | |
| 57 | df-rex | ⊢ ( ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑆 ≤ ( 𝑞 ∨ 𝑟 ) ↔ ∃ 𝑞 ( 𝑞 ∈ 𝑋 ∧ ∃ 𝑟 ∈ 𝑌 𝑆 ≤ ( 𝑞 ∨ 𝑟 ) ) ) | |
| 58 | 55 56 57 | 3imtr4g | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑆 ∈ 𝑌 ) → ( 𝑋 ≠ ∅ → ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑆 ≤ ( 𝑞 ∨ 𝑟 ) ) ) |
| 59 | 58 | impancom | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑋 ≠ ∅ ) → ( 𝑆 ∈ 𝑌 → ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑆 ≤ ( 𝑞 ∨ 𝑟 ) ) ) |
| 60 | 59 | adantrr | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅ ) ) → ( 𝑆 ∈ 𝑌 → ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑆 ≤ ( 𝑞 ∨ 𝑟 ) ) ) |
| 61 | 35 60 | jcad | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅ ) ) → ( 𝑆 ∈ 𝑌 → ( 𝑆 ∈ 𝐴 ∧ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑆 ≤ ( 𝑞 ∨ 𝑟 ) ) ) ) |
| 62 | 33 61 | jaod | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅ ) ) → ( ( 𝑆 ∈ 𝑋 ∨ 𝑆 ∈ 𝑌 ) → ( 𝑆 ∈ 𝐴 ∧ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑆 ≤ ( 𝑞 ∨ 𝑟 ) ) ) ) |
| 63 | pm4.72 | ⊢ ( ( ( 𝑆 ∈ 𝑋 ∨ 𝑆 ∈ 𝑌 ) → ( 𝑆 ∈ 𝐴 ∧ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑆 ≤ ( 𝑞 ∨ 𝑟 ) ) ) ↔ ( ( 𝑆 ∈ 𝐴 ∧ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑆 ≤ ( 𝑞 ∨ 𝑟 ) ) ↔ ( ( 𝑆 ∈ 𝑋 ∨ 𝑆 ∈ 𝑌 ) ∨ ( 𝑆 ∈ 𝐴 ∧ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑆 ≤ ( 𝑞 ∨ 𝑟 ) ) ) ) ) | |
| 64 | 62 63 | sylib | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅ ) ) → ( ( 𝑆 ∈ 𝐴 ∧ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑆 ≤ ( 𝑞 ∨ 𝑟 ) ) ↔ ( ( 𝑆 ∈ 𝑋 ∨ 𝑆 ∈ 𝑌 ) ∨ ( 𝑆 ∈ 𝐴 ∧ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑆 ≤ ( 𝑞 ∨ 𝑟 ) ) ) ) ) |
| 65 | 6 64 | bitr4d | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅ ) ) → ( 𝑆 ∈ ( 𝑋 + 𝑌 ) ↔ ( 𝑆 ∈ 𝐴 ∧ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑆 ≤ ( 𝑞 ∨ 𝑟 ) ) ) ) |