This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem hllat

Description: A Hilbert lattice is a lattice. (Contributed by NM, 20-Oct-2011)

Ref Expression
Assertion hllat ( 𝐾 ∈ HL → 𝐾 ∈ Lat )

Proof

Step Hyp Ref Expression
1 hlatl ( 𝐾 ∈ HL → 𝐾 ∈ AtLat )
2 atllat ( 𝐾 ∈ AtLat → 𝐾 ∈ Lat )
3 1 2 syl ( 𝐾 ∈ HL → 𝐾 ∈ Lat )