This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commuted version of cvrat4 . (Contributed by NM, 28-Jan-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cvrat4.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| cvrat4.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| cvrat4.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| cvrat4.z | ⊢ 0 = ( 0. ‘ 𝐾 ) | ||
| cvrat4.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| Assertion | cvrat42 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ( 𝑋 ≠ 0 ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) → ∃ 𝑟 ∈ 𝐴 ( 𝑟 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑟 ∨ 𝑄 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvrat4.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | cvrat4.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | cvrat4.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 4 | cvrat4.z | ⊢ 0 = ( 0. ‘ 𝐾 ) | |
| 5 | cvrat4.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 6 | 1 2 3 4 5 | cvrat4 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ( 𝑋 ≠ 0 ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) → ∃ 𝑟 ∈ 𝐴 ( 𝑟 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑟 ) ) ) ) |
| 7 | hllat | ⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Lat ) | |
| 8 | 7 | ad2antrr | ⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ 𝑟 ∈ 𝐴 ) → 𝐾 ∈ Lat ) |
| 9 | simplr3 | ⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ 𝑟 ∈ 𝐴 ) → 𝑄 ∈ 𝐴 ) | |
| 10 | 1 5 | atbase | ⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵 ) |
| 11 | 9 10 | syl | ⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ 𝑟 ∈ 𝐴 ) → 𝑄 ∈ 𝐵 ) |
| 12 | 1 5 | atbase | ⊢ ( 𝑟 ∈ 𝐴 → 𝑟 ∈ 𝐵 ) |
| 13 | 12 | adantl | ⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ 𝑟 ∈ 𝐴 ) → 𝑟 ∈ 𝐵 ) |
| 14 | 1 3 | latjcom | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) → ( 𝑄 ∨ 𝑟 ) = ( 𝑟 ∨ 𝑄 ) ) |
| 15 | 8 11 13 14 | syl3anc | ⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ 𝑟 ∈ 𝐴 ) → ( 𝑄 ∨ 𝑟 ) = ( 𝑟 ∨ 𝑄 ) ) |
| 16 | 15 | breq2d | ⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ 𝑟 ∈ 𝐴 ) → ( 𝑃 ≤ ( 𝑄 ∨ 𝑟 ) ↔ 𝑃 ≤ ( 𝑟 ∨ 𝑄 ) ) ) |
| 17 | 16 | anbi2d | ⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ 𝑟 ∈ 𝐴 ) → ( ( 𝑟 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑟 ) ) ↔ ( 𝑟 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑟 ∨ 𝑄 ) ) ) ) |
| 18 | 17 | rexbidva | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ∃ 𝑟 ∈ 𝐴 ( 𝑟 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑟 ) ) ↔ ∃ 𝑟 ∈ 𝐴 ( 𝑟 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑟 ∨ 𝑄 ) ) ) ) |
| 19 | 6 18 | sylibd | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ( 𝑋 ≠ 0 ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) → ∃ 𝑟 ∈ 𝐴 ( 𝑟 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑟 ∨ 𝑄 ) ) ) ) |