This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ordtbas . (Contributed by Mario Carneiro, 3-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ordtval.1 | ⊢ 𝑋 = dom 𝑅 | |
| ordtval.2 | ⊢ 𝐴 = ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) | ||
| ordtval.3 | ⊢ 𝐵 = ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) | ||
| ordtval.4 | ⊢ 𝐶 = ran ( 𝑎 ∈ 𝑋 , 𝑏 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ( ¬ 𝑦 𝑅 𝑎 ∧ ¬ 𝑏 𝑅 𝑦 ) } ) | ||
| Assertion | ordtbas2 | ⊢ ( 𝑅 ∈ TosetRel → ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( 𝐴 ∪ 𝐵 ) ∪ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtval.1 | ⊢ 𝑋 = dom 𝑅 | |
| 2 | ordtval.2 | ⊢ 𝐴 = ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) | |
| 3 | ordtval.3 | ⊢ 𝐵 = ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) | |
| 4 | ordtval.4 | ⊢ 𝐶 = ran ( 𝑎 ∈ 𝑋 , 𝑏 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ( ¬ 𝑦 𝑅 𝑎 ∧ ¬ 𝑏 𝑅 𝑦 ) } ) | |
| 5 | ssun1 | ⊢ 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) | |
| 6 | ssun2 | ⊢ ( 𝐴 ∪ 𝐵 ) ⊆ ( { 𝑋 } ∪ ( 𝐴 ∪ 𝐵 ) ) | |
| 7 | 1 2 3 | ordtuni | ⊢ ( 𝑅 ∈ TosetRel → 𝑋 = ∪ ( { 𝑋 } ∪ ( 𝐴 ∪ 𝐵 ) ) ) |
| 8 | dmexg | ⊢ ( 𝑅 ∈ TosetRel → dom 𝑅 ∈ V ) | |
| 9 | 1 8 | eqeltrid | ⊢ ( 𝑅 ∈ TosetRel → 𝑋 ∈ V ) |
| 10 | 7 9 | eqeltrrd | ⊢ ( 𝑅 ∈ TosetRel → ∪ ( { 𝑋 } ∪ ( 𝐴 ∪ 𝐵 ) ) ∈ V ) |
| 11 | uniexb | ⊢ ( ( { 𝑋 } ∪ ( 𝐴 ∪ 𝐵 ) ) ∈ V ↔ ∪ ( { 𝑋 } ∪ ( 𝐴 ∪ 𝐵 ) ) ∈ V ) | |
| 12 | 10 11 | sylibr | ⊢ ( 𝑅 ∈ TosetRel → ( { 𝑋 } ∪ ( 𝐴 ∪ 𝐵 ) ) ∈ V ) |
| 13 | ssexg | ⊢ ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( { 𝑋 } ∪ ( 𝐴 ∪ 𝐵 ) ) ∧ ( { 𝑋 } ∪ ( 𝐴 ∪ 𝐵 ) ) ∈ V ) → ( 𝐴 ∪ 𝐵 ) ∈ V ) | |
| 14 | 6 12 13 | sylancr | ⊢ ( 𝑅 ∈ TosetRel → ( 𝐴 ∪ 𝐵 ) ∈ V ) |
| 15 | ssexg | ⊢ ( ( 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐴 ∪ 𝐵 ) ∈ V ) → 𝐴 ∈ V ) | |
| 16 | 5 14 15 | sylancr | ⊢ ( 𝑅 ∈ TosetRel → 𝐴 ∈ V ) |
| 17 | ssun2 | ⊢ 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) | |
| 18 | ssexg | ⊢ ( ( 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐴 ∪ 𝐵 ) ∈ V ) → 𝐵 ∈ V ) | |
| 19 | 17 14 18 | sylancr | ⊢ ( 𝑅 ∈ TosetRel → 𝐵 ∈ V ) |
| 20 | elfiun | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝑧 ∈ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) ↔ ( 𝑧 ∈ ( fi ‘ 𝐴 ) ∨ 𝑧 ∈ ( fi ‘ 𝐵 ) ∨ ∃ 𝑚 ∈ ( fi ‘ 𝐴 ) ∃ 𝑛 ∈ ( fi ‘ 𝐵 ) 𝑧 = ( 𝑚 ∩ 𝑛 ) ) ) ) | |
| 21 | 16 19 20 | syl2anc | ⊢ ( 𝑅 ∈ TosetRel → ( 𝑧 ∈ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) ↔ ( 𝑧 ∈ ( fi ‘ 𝐴 ) ∨ 𝑧 ∈ ( fi ‘ 𝐵 ) ∨ ∃ 𝑚 ∈ ( fi ‘ 𝐴 ) ∃ 𝑛 ∈ ( fi ‘ 𝐵 ) 𝑧 = ( 𝑚 ∩ 𝑛 ) ) ) ) |
| 22 | 1 2 | ordtbaslem | ⊢ ( 𝑅 ∈ TosetRel → ( fi ‘ 𝐴 ) = 𝐴 ) |
| 23 | 22 5 | eqsstrdi | ⊢ ( 𝑅 ∈ TosetRel → ( fi ‘ 𝐴 ) ⊆ ( 𝐴 ∪ 𝐵 ) ) |
| 24 | ssun1 | ⊢ ( 𝐴 ∪ 𝐵 ) ⊆ ( ( 𝐴 ∪ 𝐵 ) ∪ 𝐶 ) | |
| 25 | 23 24 | sstrdi | ⊢ ( 𝑅 ∈ TosetRel → ( fi ‘ 𝐴 ) ⊆ ( ( 𝐴 ∪ 𝐵 ) ∪ 𝐶 ) ) |
| 26 | 25 | sseld | ⊢ ( 𝑅 ∈ TosetRel → ( 𝑧 ∈ ( fi ‘ 𝐴 ) → 𝑧 ∈ ( ( 𝐴 ∪ 𝐵 ) ∪ 𝐶 ) ) ) |
| 27 | cnvtsr | ⊢ ( 𝑅 ∈ TosetRel → ◡ 𝑅 ∈ TosetRel ) | |
| 28 | df-rn | ⊢ ran 𝑅 = dom ◡ 𝑅 | |
| 29 | eqid | ⊢ ran ( 𝑥 ∈ ran 𝑅 ↦ { 𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦 ◡ 𝑅 𝑥 } ) = ran ( 𝑥 ∈ ran 𝑅 ↦ { 𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦 ◡ 𝑅 𝑥 } ) | |
| 30 | 28 29 | ordtbaslem | ⊢ ( ◡ 𝑅 ∈ TosetRel → ( fi ‘ ran ( 𝑥 ∈ ran 𝑅 ↦ { 𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦 ◡ 𝑅 𝑥 } ) ) = ran ( 𝑥 ∈ ran 𝑅 ↦ { 𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦 ◡ 𝑅 𝑥 } ) ) |
| 31 | 27 30 | syl | ⊢ ( 𝑅 ∈ TosetRel → ( fi ‘ ran ( 𝑥 ∈ ran 𝑅 ↦ { 𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦 ◡ 𝑅 𝑥 } ) ) = ran ( 𝑥 ∈ ran 𝑅 ↦ { 𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦 ◡ 𝑅 𝑥 } ) ) |
| 32 | tsrps | ⊢ ( 𝑅 ∈ TosetRel → 𝑅 ∈ PosetRel ) | |
| 33 | 1 | psrn | ⊢ ( 𝑅 ∈ PosetRel → 𝑋 = ran 𝑅 ) |
| 34 | 32 33 | syl | ⊢ ( 𝑅 ∈ TosetRel → 𝑋 = ran 𝑅 ) |
| 35 | vex | ⊢ 𝑦 ∈ V | |
| 36 | vex | ⊢ 𝑥 ∈ V | |
| 37 | 35 36 | brcnv | ⊢ ( 𝑦 ◡ 𝑅 𝑥 ↔ 𝑥 𝑅 𝑦 ) |
| 38 | 37 | bicomi | ⊢ ( 𝑥 𝑅 𝑦 ↔ 𝑦 ◡ 𝑅 𝑥 ) |
| 39 | 38 | notbii | ⊢ ( ¬ 𝑥 𝑅 𝑦 ↔ ¬ 𝑦 ◡ 𝑅 𝑥 ) |
| 40 | 39 | a1i | ⊢ ( 𝑅 ∈ TosetRel → ( ¬ 𝑥 𝑅 𝑦 ↔ ¬ 𝑦 ◡ 𝑅 𝑥 ) ) |
| 41 | 34 40 | rabeqbidv | ⊢ ( 𝑅 ∈ TosetRel → { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } = { 𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦 ◡ 𝑅 𝑥 } ) |
| 42 | 34 41 | mpteq12dv | ⊢ ( 𝑅 ∈ TosetRel → ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) = ( 𝑥 ∈ ran 𝑅 ↦ { 𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦 ◡ 𝑅 𝑥 } ) ) |
| 43 | 42 | rneqd | ⊢ ( 𝑅 ∈ TosetRel → ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) = ran ( 𝑥 ∈ ran 𝑅 ↦ { 𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦 ◡ 𝑅 𝑥 } ) ) |
| 44 | 3 43 | eqtrid | ⊢ ( 𝑅 ∈ TosetRel → 𝐵 = ran ( 𝑥 ∈ ran 𝑅 ↦ { 𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦 ◡ 𝑅 𝑥 } ) ) |
| 45 | 44 | fveq2d | ⊢ ( 𝑅 ∈ TosetRel → ( fi ‘ 𝐵 ) = ( fi ‘ ran ( 𝑥 ∈ ran 𝑅 ↦ { 𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦 ◡ 𝑅 𝑥 } ) ) ) |
| 46 | 31 45 44 | 3eqtr4d | ⊢ ( 𝑅 ∈ TosetRel → ( fi ‘ 𝐵 ) = 𝐵 ) |
| 47 | 46 17 | eqsstrdi | ⊢ ( 𝑅 ∈ TosetRel → ( fi ‘ 𝐵 ) ⊆ ( 𝐴 ∪ 𝐵 ) ) |
| 48 | 47 24 | sstrdi | ⊢ ( 𝑅 ∈ TosetRel → ( fi ‘ 𝐵 ) ⊆ ( ( 𝐴 ∪ 𝐵 ) ∪ 𝐶 ) ) |
| 49 | 48 | sseld | ⊢ ( 𝑅 ∈ TosetRel → ( 𝑧 ∈ ( fi ‘ 𝐵 ) → 𝑧 ∈ ( ( 𝐴 ∪ 𝐵 ) ∪ 𝐶 ) ) ) |
| 50 | ssun2 | ⊢ 𝐶 ⊆ ( ( 𝐴 ∪ 𝐵 ) ∪ 𝐶 ) | |
| 51 | 22 2 | eqtrdi | ⊢ ( 𝑅 ∈ TosetRel → ( fi ‘ 𝐴 ) = ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ) |
| 52 | 51 | eleq2d | ⊢ ( 𝑅 ∈ TosetRel → ( 𝑚 ∈ ( fi ‘ 𝐴 ) ↔ 𝑚 ∈ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ) ) |
| 53 | breq2 | ⊢ ( 𝑥 = 𝑎 → ( 𝑦 𝑅 𝑥 ↔ 𝑦 𝑅 𝑎 ) ) | |
| 54 | 53 | notbid | ⊢ ( 𝑥 = 𝑎 → ( ¬ 𝑦 𝑅 𝑥 ↔ ¬ 𝑦 𝑅 𝑎 ) ) |
| 55 | 54 | rabbidv | ⊢ ( 𝑥 = 𝑎 → { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } = { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑎 } ) |
| 56 | 55 | cbvmptv | ⊢ ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) = ( 𝑎 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑎 } ) |
| 57 | 56 | elrnmpt | ⊢ ( 𝑚 ∈ V → ( 𝑚 ∈ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ↔ ∃ 𝑎 ∈ 𝑋 𝑚 = { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑎 } ) ) |
| 58 | 57 | elv | ⊢ ( 𝑚 ∈ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ↔ ∃ 𝑎 ∈ 𝑋 𝑚 = { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑎 } ) |
| 59 | 52 58 | bitrdi | ⊢ ( 𝑅 ∈ TosetRel → ( 𝑚 ∈ ( fi ‘ 𝐴 ) ↔ ∃ 𝑎 ∈ 𝑋 𝑚 = { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑎 } ) ) |
| 60 | 46 3 | eqtrdi | ⊢ ( 𝑅 ∈ TosetRel → ( fi ‘ 𝐵 ) = ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ) |
| 61 | 60 | eleq2d | ⊢ ( 𝑅 ∈ TosetRel → ( 𝑛 ∈ ( fi ‘ 𝐵 ) ↔ 𝑛 ∈ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ) ) |
| 62 | breq1 | ⊢ ( 𝑥 = 𝑏 → ( 𝑥 𝑅 𝑦 ↔ 𝑏 𝑅 𝑦 ) ) | |
| 63 | 62 | notbid | ⊢ ( 𝑥 = 𝑏 → ( ¬ 𝑥 𝑅 𝑦 ↔ ¬ 𝑏 𝑅 𝑦 ) ) |
| 64 | 63 | rabbidv | ⊢ ( 𝑥 = 𝑏 → { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } = { 𝑦 ∈ 𝑋 ∣ ¬ 𝑏 𝑅 𝑦 } ) |
| 65 | 64 | cbvmptv | ⊢ ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) = ( 𝑏 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑏 𝑅 𝑦 } ) |
| 66 | 65 | elrnmpt | ⊢ ( 𝑛 ∈ V → ( 𝑛 ∈ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ↔ ∃ 𝑏 ∈ 𝑋 𝑛 = { 𝑦 ∈ 𝑋 ∣ ¬ 𝑏 𝑅 𝑦 } ) ) |
| 67 | 66 | elv | ⊢ ( 𝑛 ∈ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ↔ ∃ 𝑏 ∈ 𝑋 𝑛 = { 𝑦 ∈ 𝑋 ∣ ¬ 𝑏 𝑅 𝑦 } ) |
| 68 | 61 67 | bitrdi | ⊢ ( 𝑅 ∈ TosetRel → ( 𝑛 ∈ ( fi ‘ 𝐵 ) ↔ ∃ 𝑏 ∈ 𝑋 𝑛 = { 𝑦 ∈ 𝑋 ∣ ¬ 𝑏 𝑅 𝑦 } ) ) |
| 69 | 59 68 | anbi12d | ⊢ ( 𝑅 ∈ TosetRel → ( ( 𝑚 ∈ ( fi ‘ 𝐴 ) ∧ 𝑛 ∈ ( fi ‘ 𝐵 ) ) ↔ ( ∃ 𝑎 ∈ 𝑋 𝑚 = { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑎 } ∧ ∃ 𝑏 ∈ 𝑋 𝑛 = { 𝑦 ∈ 𝑋 ∣ ¬ 𝑏 𝑅 𝑦 } ) ) ) |
| 70 | reeanv | ⊢ ( ∃ 𝑎 ∈ 𝑋 ∃ 𝑏 ∈ 𝑋 ( 𝑚 = { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑎 } ∧ 𝑛 = { 𝑦 ∈ 𝑋 ∣ ¬ 𝑏 𝑅 𝑦 } ) ↔ ( ∃ 𝑎 ∈ 𝑋 𝑚 = { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑎 } ∧ ∃ 𝑏 ∈ 𝑋 𝑛 = { 𝑦 ∈ 𝑋 ∣ ¬ 𝑏 𝑅 𝑦 } ) ) | |
| 71 | ineq12 | ⊢ ( ( 𝑚 = { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑎 } ∧ 𝑛 = { 𝑦 ∈ 𝑋 ∣ ¬ 𝑏 𝑅 𝑦 } ) → ( 𝑚 ∩ 𝑛 ) = ( { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑎 } ∩ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑏 𝑅 𝑦 } ) ) | |
| 72 | inrab | ⊢ ( { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑎 } ∩ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑏 𝑅 𝑦 } ) = { 𝑦 ∈ 𝑋 ∣ ( ¬ 𝑦 𝑅 𝑎 ∧ ¬ 𝑏 𝑅 𝑦 ) } | |
| 73 | 71 72 | eqtrdi | ⊢ ( ( 𝑚 = { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑎 } ∧ 𝑛 = { 𝑦 ∈ 𝑋 ∣ ¬ 𝑏 𝑅 𝑦 } ) → ( 𝑚 ∩ 𝑛 ) = { 𝑦 ∈ 𝑋 ∣ ( ¬ 𝑦 𝑅 𝑎 ∧ ¬ 𝑏 𝑅 𝑦 ) } ) |
| 74 | 73 | reximi | ⊢ ( ∃ 𝑏 ∈ 𝑋 ( 𝑚 = { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑎 } ∧ 𝑛 = { 𝑦 ∈ 𝑋 ∣ ¬ 𝑏 𝑅 𝑦 } ) → ∃ 𝑏 ∈ 𝑋 ( 𝑚 ∩ 𝑛 ) = { 𝑦 ∈ 𝑋 ∣ ( ¬ 𝑦 𝑅 𝑎 ∧ ¬ 𝑏 𝑅 𝑦 ) } ) |
| 75 | 74 | reximi | ⊢ ( ∃ 𝑎 ∈ 𝑋 ∃ 𝑏 ∈ 𝑋 ( 𝑚 = { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑎 } ∧ 𝑛 = { 𝑦 ∈ 𝑋 ∣ ¬ 𝑏 𝑅 𝑦 } ) → ∃ 𝑎 ∈ 𝑋 ∃ 𝑏 ∈ 𝑋 ( 𝑚 ∩ 𝑛 ) = { 𝑦 ∈ 𝑋 ∣ ( ¬ 𝑦 𝑅 𝑎 ∧ ¬ 𝑏 𝑅 𝑦 ) } ) |
| 76 | 70 75 | sylbir | ⊢ ( ( ∃ 𝑎 ∈ 𝑋 𝑚 = { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑎 } ∧ ∃ 𝑏 ∈ 𝑋 𝑛 = { 𝑦 ∈ 𝑋 ∣ ¬ 𝑏 𝑅 𝑦 } ) → ∃ 𝑎 ∈ 𝑋 ∃ 𝑏 ∈ 𝑋 ( 𝑚 ∩ 𝑛 ) = { 𝑦 ∈ 𝑋 ∣ ( ¬ 𝑦 𝑅 𝑎 ∧ ¬ 𝑏 𝑅 𝑦 ) } ) |
| 77 | 69 76 | biimtrdi | ⊢ ( 𝑅 ∈ TosetRel → ( ( 𝑚 ∈ ( fi ‘ 𝐴 ) ∧ 𝑛 ∈ ( fi ‘ 𝐵 ) ) → ∃ 𝑎 ∈ 𝑋 ∃ 𝑏 ∈ 𝑋 ( 𝑚 ∩ 𝑛 ) = { 𝑦 ∈ 𝑋 ∣ ( ¬ 𝑦 𝑅 𝑎 ∧ ¬ 𝑏 𝑅 𝑦 ) } ) ) |
| 78 | 77 | imp | ⊢ ( ( 𝑅 ∈ TosetRel ∧ ( 𝑚 ∈ ( fi ‘ 𝐴 ) ∧ 𝑛 ∈ ( fi ‘ 𝐵 ) ) ) → ∃ 𝑎 ∈ 𝑋 ∃ 𝑏 ∈ 𝑋 ( 𝑚 ∩ 𝑛 ) = { 𝑦 ∈ 𝑋 ∣ ( ¬ 𝑦 𝑅 𝑎 ∧ ¬ 𝑏 𝑅 𝑦 ) } ) |
| 79 | vex | ⊢ 𝑚 ∈ V | |
| 80 | 79 | inex1 | ⊢ ( 𝑚 ∩ 𝑛 ) ∈ V |
| 81 | eqid | ⊢ ( 𝑎 ∈ 𝑋 , 𝑏 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ( ¬ 𝑦 𝑅 𝑎 ∧ ¬ 𝑏 𝑅 𝑦 ) } ) = ( 𝑎 ∈ 𝑋 , 𝑏 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ( ¬ 𝑦 𝑅 𝑎 ∧ ¬ 𝑏 𝑅 𝑦 ) } ) | |
| 82 | 81 | elrnmpog | ⊢ ( ( 𝑚 ∩ 𝑛 ) ∈ V → ( ( 𝑚 ∩ 𝑛 ) ∈ ran ( 𝑎 ∈ 𝑋 , 𝑏 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ( ¬ 𝑦 𝑅 𝑎 ∧ ¬ 𝑏 𝑅 𝑦 ) } ) ↔ ∃ 𝑎 ∈ 𝑋 ∃ 𝑏 ∈ 𝑋 ( 𝑚 ∩ 𝑛 ) = { 𝑦 ∈ 𝑋 ∣ ( ¬ 𝑦 𝑅 𝑎 ∧ ¬ 𝑏 𝑅 𝑦 ) } ) ) |
| 83 | 80 82 | ax-mp | ⊢ ( ( 𝑚 ∩ 𝑛 ) ∈ ran ( 𝑎 ∈ 𝑋 , 𝑏 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ( ¬ 𝑦 𝑅 𝑎 ∧ ¬ 𝑏 𝑅 𝑦 ) } ) ↔ ∃ 𝑎 ∈ 𝑋 ∃ 𝑏 ∈ 𝑋 ( 𝑚 ∩ 𝑛 ) = { 𝑦 ∈ 𝑋 ∣ ( ¬ 𝑦 𝑅 𝑎 ∧ ¬ 𝑏 𝑅 𝑦 ) } ) |
| 84 | 78 83 | sylibr | ⊢ ( ( 𝑅 ∈ TosetRel ∧ ( 𝑚 ∈ ( fi ‘ 𝐴 ) ∧ 𝑛 ∈ ( fi ‘ 𝐵 ) ) ) → ( 𝑚 ∩ 𝑛 ) ∈ ran ( 𝑎 ∈ 𝑋 , 𝑏 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ( ¬ 𝑦 𝑅 𝑎 ∧ ¬ 𝑏 𝑅 𝑦 ) } ) ) |
| 85 | 84 4 | eleqtrrdi | ⊢ ( ( 𝑅 ∈ TosetRel ∧ ( 𝑚 ∈ ( fi ‘ 𝐴 ) ∧ 𝑛 ∈ ( fi ‘ 𝐵 ) ) ) → ( 𝑚 ∩ 𝑛 ) ∈ 𝐶 ) |
| 86 | 50 85 | sselid | ⊢ ( ( 𝑅 ∈ TosetRel ∧ ( 𝑚 ∈ ( fi ‘ 𝐴 ) ∧ 𝑛 ∈ ( fi ‘ 𝐵 ) ) ) → ( 𝑚 ∩ 𝑛 ) ∈ ( ( 𝐴 ∪ 𝐵 ) ∪ 𝐶 ) ) |
| 87 | eleq1 | ⊢ ( 𝑧 = ( 𝑚 ∩ 𝑛 ) → ( 𝑧 ∈ ( ( 𝐴 ∪ 𝐵 ) ∪ 𝐶 ) ↔ ( 𝑚 ∩ 𝑛 ) ∈ ( ( 𝐴 ∪ 𝐵 ) ∪ 𝐶 ) ) ) | |
| 88 | 86 87 | syl5ibrcom | ⊢ ( ( 𝑅 ∈ TosetRel ∧ ( 𝑚 ∈ ( fi ‘ 𝐴 ) ∧ 𝑛 ∈ ( fi ‘ 𝐵 ) ) ) → ( 𝑧 = ( 𝑚 ∩ 𝑛 ) → 𝑧 ∈ ( ( 𝐴 ∪ 𝐵 ) ∪ 𝐶 ) ) ) |
| 89 | 88 | rexlimdvva | ⊢ ( 𝑅 ∈ TosetRel → ( ∃ 𝑚 ∈ ( fi ‘ 𝐴 ) ∃ 𝑛 ∈ ( fi ‘ 𝐵 ) 𝑧 = ( 𝑚 ∩ 𝑛 ) → 𝑧 ∈ ( ( 𝐴 ∪ 𝐵 ) ∪ 𝐶 ) ) ) |
| 90 | 26 49 89 | 3jaod | ⊢ ( 𝑅 ∈ TosetRel → ( ( 𝑧 ∈ ( fi ‘ 𝐴 ) ∨ 𝑧 ∈ ( fi ‘ 𝐵 ) ∨ ∃ 𝑚 ∈ ( fi ‘ 𝐴 ) ∃ 𝑛 ∈ ( fi ‘ 𝐵 ) 𝑧 = ( 𝑚 ∩ 𝑛 ) ) → 𝑧 ∈ ( ( 𝐴 ∪ 𝐵 ) ∪ 𝐶 ) ) ) |
| 91 | 21 90 | sylbid | ⊢ ( 𝑅 ∈ TosetRel → ( 𝑧 ∈ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) → 𝑧 ∈ ( ( 𝐴 ∪ 𝐵 ) ∪ 𝐶 ) ) ) |
| 92 | 91 | ssrdv | ⊢ ( 𝑅 ∈ TosetRel → ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) ⊆ ( ( 𝐴 ∪ 𝐵 ) ∪ 𝐶 ) ) |
| 93 | ssfii | ⊢ ( ( 𝐴 ∪ 𝐵 ) ∈ V → ( 𝐴 ∪ 𝐵 ) ⊆ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) ) | |
| 94 | 14 93 | syl | ⊢ ( 𝑅 ∈ TosetRel → ( 𝐴 ∪ 𝐵 ) ⊆ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
| 95 | 94 | adantr | ⊢ ( ( 𝑅 ∈ TosetRel ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 𝐴 ∪ 𝐵 ) ⊆ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
| 96 | simprl | ⊢ ( ( 𝑅 ∈ TosetRel ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → 𝑎 ∈ 𝑋 ) | |
| 97 | eqidd | ⊢ ( ( 𝑅 ∈ TosetRel ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑎 } = { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑎 } ) | |
| 98 | 55 | rspceeqv | ⊢ ( ( 𝑎 ∈ 𝑋 ∧ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑎 } = { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑎 } ) → ∃ 𝑥 ∈ 𝑋 { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑎 } = { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) |
| 99 | 96 97 98 | syl2anc | ⊢ ( ( 𝑅 ∈ TosetRel ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ∃ 𝑥 ∈ 𝑋 { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑎 } = { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) |
| 100 | 9 | adantr | ⊢ ( ( 𝑅 ∈ TosetRel ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → 𝑋 ∈ V ) |
| 101 | rabexg | ⊢ ( 𝑋 ∈ V → { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑎 } ∈ V ) | |
| 102 | eqid | ⊢ ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) = ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) | |
| 103 | 102 | elrnmpt | ⊢ ( { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑎 } ∈ V → ( { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑎 } ∈ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ↔ ∃ 𝑥 ∈ 𝑋 { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑎 } = { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ) |
| 104 | 100 101 103 | 3syl | ⊢ ( ( 𝑅 ∈ TosetRel ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑎 } ∈ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ↔ ∃ 𝑥 ∈ 𝑋 { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑎 } = { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ) |
| 105 | 99 104 | mpbird | ⊢ ( ( 𝑅 ∈ TosetRel ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑎 } ∈ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ) |
| 106 | 105 2 | eleqtrrdi | ⊢ ( ( 𝑅 ∈ TosetRel ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑎 } ∈ 𝐴 ) |
| 107 | 5 106 | sselid | ⊢ ( ( 𝑅 ∈ TosetRel ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑎 } ∈ ( 𝐴 ∪ 𝐵 ) ) |
| 108 | 95 107 | sseldd | ⊢ ( ( 𝑅 ∈ TosetRel ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑎 } ∈ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
| 109 | simprr | ⊢ ( ( 𝑅 ∈ TosetRel ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → 𝑏 ∈ 𝑋 ) | |
| 110 | eqidd | ⊢ ( ( 𝑅 ∈ TosetRel ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → { 𝑦 ∈ 𝑋 ∣ ¬ 𝑏 𝑅 𝑦 } = { 𝑦 ∈ 𝑋 ∣ ¬ 𝑏 𝑅 𝑦 } ) | |
| 111 | 64 | rspceeqv | ⊢ ( ( 𝑏 ∈ 𝑋 ∧ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑏 𝑅 𝑦 } = { 𝑦 ∈ 𝑋 ∣ ¬ 𝑏 𝑅 𝑦 } ) → ∃ 𝑥 ∈ 𝑋 { 𝑦 ∈ 𝑋 ∣ ¬ 𝑏 𝑅 𝑦 } = { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) |
| 112 | 109 110 111 | syl2anc | ⊢ ( ( 𝑅 ∈ TosetRel ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ∃ 𝑥 ∈ 𝑋 { 𝑦 ∈ 𝑋 ∣ ¬ 𝑏 𝑅 𝑦 } = { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) |
| 113 | rabexg | ⊢ ( 𝑋 ∈ V → { 𝑦 ∈ 𝑋 ∣ ¬ 𝑏 𝑅 𝑦 } ∈ V ) | |
| 114 | eqid | ⊢ ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) = ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) | |
| 115 | 114 | elrnmpt | ⊢ ( { 𝑦 ∈ 𝑋 ∣ ¬ 𝑏 𝑅 𝑦 } ∈ V → ( { 𝑦 ∈ 𝑋 ∣ ¬ 𝑏 𝑅 𝑦 } ∈ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ↔ ∃ 𝑥 ∈ 𝑋 { 𝑦 ∈ 𝑋 ∣ ¬ 𝑏 𝑅 𝑦 } = { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ) |
| 116 | 100 113 115 | 3syl | ⊢ ( ( 𝑅 ∈ TosetRel ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( { 𝑦 ∈ 𝑋 ∣ ¬ 𝑏 𝑅 𝑦 } ∈ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ↔ ∃ 𝑥 ∈ 𝑋 { 𝑦 ∈ 𝑋 ∣ ¬ 𝑏 𝑅 𝑦 } = { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ) |
| 117 | 112 116 | mpbird | ⊢ ( ( 𝑅 ∈ TosetRel ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → { 𝑦 ∈ 𝑋 ∣ ¬ 𝑏 𝑅 𝑦 } ∈ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ) |
| 118 | 117 3 | eleqtrrdi | ⊢ ( ( 𝑅 ∈ TosetRel ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → { 𝑦 ∈ 𝑋 ∣ ¬ 𝑏 𝑅 𝑦 } ∈ 𝐵 ) |
| 119 | 17 118 | sselid | ⊢ ( ( 𝑅 ∈ TosetRel ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → { 𝑦 ∈ 𝑋 ∣ ¬ 𝑏 𝑅 𝑦 } ∈ ( 𝐴 ∪ 𝐵 ) ) |
| 120 | 95 119 | sseldd | ⊢ ( ( 𝑅 ∈ TosetRel ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → { 𝑦 ∈ 𝑋 ∣ ¬ 𝑏 𝑅 𝑦 } ∈ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
| 121 | fiin | ⊢ ( ( { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑎 } ∈ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) ∧ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑏 𝑅 𝑦 } ∈ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) ) → ( { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑎 } ∩ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑏 𝑅 𝑦 } ) ∈ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) ) | |
| 122 | 108 120 121 | syl2anc | ⊢ ( ( 𝑅 ∈ TosetRel ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑎 } ∩ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑏 𝑅 𝑦 } ) ∈ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
| 123 | 72 122 | eqeltrrid | ⊢ ( ( 𝑅 ∈ TosetRel ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → { 𝑦 ∈ 𝑋 ∣ ( ¬ 𝑦 𝑅 𝑎 ∧ ¬ 𝑏 𝑅 𝑦 ) } ∈ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
| 124 | 123 | ralrimivva | ⊢ ( 𝑅 ∈ TosetRel → ∀ 𝑎 ∈ 𝑋 ∀ 𝑏 ∈ 𝑋 { 𝑦 ∈ 𝑋 ∣ ( ¬ 𝑦 𝑅 𝑎 ∧ ¬ 𝑏 𝑅 𝑦 ) } ∈ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
| 125 | 81 | fmpo | ⊢ ( ∀ 𝑎 ∈ 𝑋 ∀ 𝑏 ∈ 𝑋 { 𝑦 ∈ 𝑋 ∣ ( ¬ 𝑦 𝑅 𝑎 ∧ ¬ 𝑏 𝑅 𝑦 ) } ∈ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) ↔ ( 𝑎 ∈ 𝑋 , 𝑏 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ( ¬ 𝑦 𝑅 𝑎 ∧ ¬ 𝑏 𝑅 𝑦 ) } ) : ( 𝑋 × 𝑋 ) ⟶ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
| 126 | 124 125 | sylib | ⊢ ( 𝑅 ∈ TosetRel → ( 𝑎 ∈ 𝑋 , 𝑏 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ( ¬ 𝑦 𝑅 𝑎 ∧ ¬ 𝑏 𝑅 𝑦 ) } ) : ( 𝑋 × 𝑋 ) ⟶ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
| 127 | 126 | frnd | ⊢ ( 𝑅 ∈ TosetRel → ran ( 𝑎 ∈ 𝑋 , 𝑏 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ( ¬ 𝑦 𝑅 𝑎 ∧ ¬ 𝑏 𝑅 𝑦 ) } ) ⊆ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
| 128 | 4 127 | eqsstrid | ⊢ ( 𝑅 ∈ TosetRel → 𝐶 ⊆ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
| 129 | 94 128 | unssd | ⊢ ( 𝑅 ∈ TosetRel → ( ( 𝐴 ∪ 𝐵 ) ∪ 𝐶 ) ⊆ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
| 130 | 92 129 | eqssd | ⊢ ( 𝑅 ∈ TosetRel → ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( 𝐴 ∪ 𝐵 ) ∪ 𝐶 ) ) |