This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ordtbas . In a total order, unbounded-above intervals are closed under intersection. (Contributed by Mario Carneiro, 3-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ordtval.1 | ⊢ 𝑋 = dom 𝑅 | |
| ordtval.2 | ⊢ 𝐴 = ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) | ||
| Assertion | ordtbaslem | ⊢ ( 𝑅 ∈ TosetRel → ( fi ‘ 𝐴 ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtval.1 | ⊢ 𝑋 = dom 𝑅 | |
| 2 | ordtval.2 | ⊢ 𝐴 = ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) | |
| 3 | 3anrot | ⊢ ( ( 𝑦 ∈ 𝑋 ∧ 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ↔ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) | |
| 4 | 1 | tsrlemax | ⊢ ( ( 𝑅 ∈ TosetRel ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 𝑦 𝑅 if ( 𝑎 𝑅 𝑏 , 𝑏 , 𝑎 ) ↔ ( 𝑦 𝑅 𝑎 ∨ 𝑦 𝑅 𝑏 ) ) ) |
| 5 | 3 4 | sylan2br | ⊢ ( ( 𝑅 ∈ TosetRel ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑦 𝑅 if ( 𝑎 𝑅 𝑏 , 𝑏 , 𝑎 ) ↔ ( 𝑦 𝑅 𝑎 ∨ 𝑦 𝑅 𝑏 ) ) ) |
| 6 | 5 | 3exp2 | ⊢ ( 𝑅 ∈ TosetRel → ( 𝑎 ∈ 𝑋 → ( 𝑏 ∈ 𝑋 → ( 𝑦 ∈ 𝑋 → ( 𝑦 𝑅 if ( 𝑎 𝑅 𝑏 , 𝑏 , 𝑎 ) ↔ ( 𝑦 𝑅 𝑎 ∨ 𝑦 𝑅 𝑏 ) ) ) ) ) ) |
| 7 | 6 | imp42 | ⊢ ( ( ( 𝑅 ∈ TosetRel ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑦 𝑅 if ( 𝑎 𝑅 𝑏 , 𝑏 , 𝑎 ) ↔ ( 𝑦 𝑅 𝑎 ∨ 𝑦 𝑅 𝑏 ) ) ) |
| 8 | 7 | notbid | ⊢ ( ( ( 𝑅 ∈ TosetRel ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ 𝑦 ∈ 𝑋 ) → ( ¬ 𝑦 𝑅 if ( 𝑎 𝑅 𝑏 , 𝑏 , 𝑎 ) ↔ ¬ ( 𝑦 𝑅 𝑎 ∨ 𝑦 𝑅 𝑏 ) ) ) |
| 9 | ioran | ⊢ ( ¬ ( 𝑦 𝑅 𝑎 ∨ 𝑦 𝑅 𝑏 ) ↔ ( ¬ 𝑦 𝑅 𝑎 ∧ ¬ 𝑦 𝑅 𝑏 ) ) | |
| 10 | 8 9 | bitrdi | ⊢ ( ( ( 𝑅 ∈ TosetRel ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ 𝑦 ∈ 𝑋 ) → ( ¬ 𝑦 𝑅 if ( 𝑎 𝑅 𝑏 , 𝑏 , 𝑎 ) ↔ ( ¬ 𝑦 𝑅 𝑎 ∧ ¬ 𝑦 𝑅 𝑏 ) ) ) |
| 11 | 10 | rabbidva | ⊢ ( ( 𝑅 ∈ TosetRel ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 if ( 𝑎 𝑅 𝑏 , 𝑏 , 𝑎 ) } = { 𝑦 ∈ 𝑋 ∣ ( ¬ 𝑦 𝑅 𝑎 ∧ ¬ 𝑦 𝑅 𝑏 ) } ) |
| 12 | ifcl | ⊢ ( ( 𝑏 ∈ 𝑋 ∧ 𝑎 ∈ 𝑋 ) → if ( 𝑎 𝑅 𝑏 , 𝑏 , 𝑎 ) ∈ 𝑋 ) | |
| 13 | 12 | ancoms | ⊢ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) → if ( 𝑎 𝑅 𝑏 , 𝑏 , 𝑎 ) ∈ 𝑋 ) |
| 14 | dmexg | ⊢ ( 𝑅 ∈ TosetRel → dom 𝑅 ∈ V ) | |
| 15 | 1 14 | eqeltrid | ⊢ ( 𝑅 ∈ TosetRel → 𝑋 ∈ V ) |
| 16 | 15 | adantr | ⊢ ( ( 𝑅 ∈ TosetRel ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → 𝑋 ∈ V ) |
| 17 | rabexg | ⊢ ( 𝑋 ∈ V → { 𝑦 ∈ 𝑋 ∣ ( ¬ 𝑦 𝑅 𝑎 ∧ ¬ 𝑦 𝑅 𝑏 ) } ∈ V ) | |
| 18 | 16 17 | syl | ⊢ ( ( 𝑅 ∈ TosetRel ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → { 𝑦 ∈ 𝑋 ∣ ( ¬ 𝑦 𝑅 𝑎 ∧ ¬ 𝑦 𝑅 𝑏 ) } ∈ V ) |
| 19 | 11 18 | eqeltrd | ⊢ ( ( 𝑅 ∈ TosetRel ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 if ( 𝑎 𝑅 𝑏 , 𝑏 , 𝑎 ) } ∈ V ) |
| 20 | eqid | ⊢ ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) = ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) | |
| 21 | breq2 | ⊢ ( 𝑥 = if ( 𝑎 𝑅 𝑏 , 𝑏 , 𝑎 ) → ( 𝑦 𝑅 𝑥 ↔ 𝑦 𝑅 if ( 𝑎 𝑅 𝑏 , 𝑏 , 𝑎 ) ) ) | |
| 22 | 21 | notbid | ⊢ ( 𝑥 = if ( 𝑎 𝑅 𝑏 , 𝑏 , 𝑎 ) → ( ¬ 𝑦 𝑅 𝑥 ↔ ¬ 𝑦 𝑅 if ( 𝑎 𝑅 𝑏 , 𝑏 , 𝑎 ) ) ) |
| 23 | 22 | rabbidv | ⊢ ( 𝑥 = if ( 𝑎 𝑅 𝑏 , 𝑏 , 𝑎 ) → { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } = { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 if ( 𝑎 𝑅 𝑏 , 𝑏 , 𝑎 ) } ) |
| 24 | 20 23 | elrnmpt1s | ⊢ ( ( if ( 𝑎 𝑅 𝑏 , 𝑏 , 𝑎 ) ∈ 𝑋 ∧ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 if ( 𝑎 𝑅 𝑏 , 𝑏 , 𝑎 ) } ∈ V ) → { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 if ( 𝑎 𝑅 𝑏 , 𝑏 , 𝑎 ) } ∈ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ) |
| 25 | 24 2 | eleqtrrdi | ⊢ ( ( if ( 𝑎 𝑅 𝑏 , 𝑏 , 𝑎 ) ∈ 𝑋 ∧ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 if ( 𝑎 𝑅 𝑏 , 𝑏 , 𝑎 ) } ∈ V ) → { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 if ( 𝑎 𝑅 𝑏 , 𝑏 , 𝑎 ) } ∈ 𝐴 ) |
| 26 | 13 19 25 | syl2an2 | ⊢ ( ( 𝑅 ∈ TosetRel ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 if ( 𝑎 𝑅 𝑏 , 𝑏 , 𝑎 ) } ∈ 𝐴 ) |
| 27 | 11 26 | eqeltrrd | ⊢ ( ( 𝑅 ∈ TosetRel ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → { 𝑦 ∈ 𝑋 ∣ ( ¬ 𝑦 𝑅 𝑎 ∧ ¬ 𝑦 𝑅 𝑏 ) } ∈ 𝐴 ) |
| 28 | 27 | ralrimivva | ⊢ ( 𝑅 ∈ TosetRel → ∀ 𝑎 ∈ 𝑋 ∀ 𝑏 ∈ 𝑋 { 𝑦 ∈ 𝑋 ∣ ( ¬ 𝑦 𝑅 𝑎 ∧ ¬ 𝑦 𝑅 𝑏 ) } ∈ 𝐴 ) |
| 29 | rabexg | ⊢ ( 𝑋 ∈ V → { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑎 } ∈ V ) | |
| 30 | 15 29 | syl | ⊢ ( 𝑅 ∈ TosetRel → { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑎 } ∈ V ) |
| 31 | 30 | ralrimivw | ⊢ ( 𝑅 ∈ TosetRel → ∀ 𝑎 ∈ 𝑋 { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑎 } ∈ V ) |
| 32 | breq2 | ⊢ ( 𝑥 = 𝑎 → ( 𝑦 𝑅 𝑥 ↔ 𝑦 𝑅 𝑎 ) ) | |
| 33 | 32 | notbid | ⊢ ( 𝑥 = 𝑎 → ( ¬ 𝑦 𝑅 𝑥 ↔ ¬ 𝑦 𝑅 𝑎 ) ) |
| 34 | 33 | rabbidv | ⊢ ( 𝑥 = 𝑎 → { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } = { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑎 } ) |
| 35 | 34 | cbvmptv | ⊢ ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) = ( 𝑎 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑎 } ) |
| 36 | ineq1 | ⊢ ( 𝑧 = { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑎 } → ( 𝑧 ∩ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑏 } ) = ( { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑎 } ∩ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑏 } ) ) | |
| 37 | inrab | ⊢ ( { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑎 } ∩ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑏 } ) = { 𝑦 ∈ 𝑋 ∣ ( ¬ 𝑦 𝑅 𝑎 ∧ ¬ 𝑦 𝑅 𝑏 ) } | |
| 38 | 36 37 | eqtrdi | ⊢ ( 𝑧 = { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑎 } → ( 𝑧 ∩ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑏 } ) = { 𝑦 ∈ 𝑋 ∣ ( ¬ 𝑦 𝑅 𝑎 ∧ ¬ 𝑦 𝑅 𝑏 ) } ) |
| 39 | 38 | eleq1d | ⊢ ( 𝑧 = { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑎 } → ( ( 𝑧 ∩ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑏 } ) ∈ 𝐴 ↔ { 𝑦 ∈ 𝑋 ∣ ( ¬ 𝑦 𝑅 𝑎 ∧ ¬ 𝑦 𝑅 𝑏 ) } ∈ 𝐴 ) ) |
| 40 | 39 | ralbidv | ⊢ ( 𝑧 = { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑎 } → ( ∀ 𝑏 ∈ 𝑋 ( 𝑧 ∩ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑏 } ) ∈ 𝐴 ↔ ∀ 𝑏 ∈ 𝑋 { 𝑦 ∈ 𝑋 ∣ ( ¬ 𝑦 𝑅 𝑎 ∧ ¬ 𝑦 𝑅 𝑏 ) } ∈ 𝐴 ) ) |
| 41 | 35 40 | ralrnmptw | ⊢ ( ∀ 𝑎 ∈ 𝑋 { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑎 } ∈ V → ( ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ∀ 𝑏 ∈ 𝑋 ( 𝑧 ∩ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑏 } ) ∈ 𝐴 ↔ ∀ 𝑎 ∈ 𝑋 ∀ 𝑏 ∈ 𝑋 { 𝑦 ∈ 𝑋 ∣ ( ¬ 𝑦 𝑅 𝑎 ∧ ¬ 𝑦 𝑅 𝑏 ) } ∈ 𝐴 ) ) |
| 42 | 31 41 | syl | ⊢ ( 𝑅 ∈ TosetRel → ( ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ∀ 𝑏 ∈ 𝑋 ( 𝑧 ∩ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑏 } ) ∈ 𝐴 ↔ ∀ 𝑎 ∈ 𝑋 ∀ 𝑏 ∈ 𝑋 { 𝑦 ∈ 𝑋 ∣ ( ¬ 𝑦 𝑅 𝑎 ∧ ¬ 𝑦 𝑅 𝑏 ) } ∈ 𝐴 ) ) |
| 43 | 28 42 | mpbird | ⊢ ( 𝑅 ∈ TosetRel → ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ∀ 𝑏 ∈ 𝑋 ( 𝑧 ∩ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑏 } ) ∈ 𝐴 ) |
| 44 | rabexg | ⊢ ( 𝑋 ∈ V → { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑏 } ∈ V ) | |
| 45 | 15 44 | syl | ⊢ ( 𝑅 ∈ TosetRel → { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑏 } ∈ V ) |
| 46 | 45 | ralrimivw | ⊢ ( 𝑅 ∈ TosetRel → ∀ 𝑏 ∈ 𝑋 { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑏 } ∈ V ) |
| 47 | breq2 | ⊢ ( 𝑥 = 𝑏 → ( 𝑦 𝑅 𝑥 ↔ 𝑦 𝑅 𝑏 ) ) | |
| 48 | 47 | notbid | ⊢ ( 𝑥 = 𝑏 → ( ¬ 𝑦 𝑅 𝑥 ↔ ¬ 𝑦 𝑅 𝑏 ) ) |
| 49 | 48 | rabbidv | ⊢ ( 𝑥 = 𝑏 → { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } = { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑏 } ) |
| 50 | 49 | cbvmptv | ⊢ ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) = ( 𝑏 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑏 } ) |
| 51 | ineq2 | ⊢ ( 𝑤 = { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑏 } → ( 𝑧 ∩ 𝑤 ) = ( 𝑧 ∩ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑏 } ) ) | |
| 52 | 51 | eleq1d | ⊢ ( 𝑤 = { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑏 } → ( ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 ↔ ( 𝑧 ∩ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑏 } ) ∈ 𝐴 ) ) |
| 53 | 50 52 | ralrnmptw | ⊢ ( ∀ 𝑏 ∈ 𝑋 { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑏 } ∈ V → ( ∀ 𝑤 ∈ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 ↔ ∀ 𝑏 ∈ 𝑋 ( 𝑧 ∩ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑏 } ) ∈ 𝐴 ) ) |
| 54 | 46 53 | syl | ⊢ ( 𝑅 ∈ TosetRel → ( ∀ 𝑤 ∈ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 ↔ ∀ 𝑏 ∈ 𝑋 ( 𝑧 ∩ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑏 } ) ∈ 𝐴 ) ) |
| 55 | 54 | ralbidv | ⊢ ( 𝑅 ∈ TosetRel → ( ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ∀ 𝑤 ∈ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 ↔ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ∀ 𝑏 ∈ 𝑋 ( 𝑧 ∩ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑏 } ) ∈ 𝐴 ) ) |
| 56 | 43 55 | mpbird | ⊢ ( 𝑅 ∈ TosetRel → ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ∀ 𝑤 ∈ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 ) |
| 57 | 2 | raleqi | ⊢ ( ∀ 𝑤 ∈ 𝐴 ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 ↔ ∀ 𝑤 ∈ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 ) |
| 58 | 2 57 | raleqbii | ⊢ ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 ↔ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ∀ 𝑤 ∈ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 ) |
| 59 | 56 58 | sylibr | ⊢ ( 𝑅 ∈ TosetRel → ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 ) |
| 60 | 15 | pwexd | ⊢ ( 𝑅 ∈ TosetRel → 𝒫 𝑋 ∈ V ) |
| 61 | ssrab2 | ⊢ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ⊆ 𝑋 | |
| 62 | 15 | adantr | ⊢ ( ( 𝑅 ∈ TosetRel ∧ 𝑥 ∈ 𝑋 ) → 𝑋 ∈ V ) |
| 63 | elpw2g | ⊢ ( 𝑋 ∈ V → ( { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ∈ 𝒫 𝑋 ↔ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ⊆ 𝑋 ) ) | |
| 64 | 62 63 | syl | ⊢ ( ( 𝑅 ∈ TosetRel ∧ 𝑥 ∈ 𝑋 ) → ( { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ∈ 𝒫 𝑋 ↔ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ⊆ 𝑋 ) ) |
| 65 | 61 64 | mpbiri | ⊢ ( ( 𝑅 ∈ TosetRel ∧ 𝑥 ∈ 𝑋 ) → { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ∈ 𝒫 𝑋 ) |
| 66 | 65 | fmpttd | ⊢ ( 𝑅 ∈ TosetRel → ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) : 𝑋 ⟶ 𝒫 𝑋 ) |
| 67 | 66 | frnd | ⊢ ( 𝑅 ∈ TosetRel → ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ⊆ 𝒫 𝑋 ) |
| 68 | 2 67 | eqsstrid | ⊢ ( 𝑅 ∈ TosetRel → 𝐴 ⊆ 𝒫 𝑋 ) |
| 69 | 60 68 | ssexd | ⊢ ( 𝑅 ∈ TosetRel → 𝐴 ∈ V ) |
| 70 | inficl | ⊢ ( 𝐴 ∈ V → ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 ↔ ( fi ‘ 𝐴 ) = 𝐴 ) ) | |
| 71 | 69 70 | syl | ⊢ ( 𝑅 ∈ TosetRel → ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 ↔ ( fi ‘ 𝐴 ) = 𝐴 ) ) |
| 72 | 59 71 | mpbid | ⊢ ( 𝑅 ∈ TosetRel → ( fi ‘ 𝐴 ) = 𝐴 ) |