This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a total order, the finite intersections of the open rays generates the set of open intervals, but no more - these four collections form a subbasis for the order topology. (Contributed by Mario Carneiro, 3-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ordtval.1 | ⊢ 𝑋 = dom 𝑅 | |
| ordtval.2 | ⊢ 𝐴 = ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) | ||
| ordtval.3 | ⊢ 𝐵 = ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) | ||
| ordtval.4 | ⊢ 𝐶 = ran ( 𝑎 ∈ 𝑋 , 𝑏 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ( ¬ 𝑦 𝑅 𝑎 ∧ ¬ 𝑏 𝑅 𝑦 ) } ) | ||
| Assertion | ordtbas | ⊢ ( 𝑅 ∈ TosetRel → ( fi ‘ ( { 𝑋 } ∪ ( 𝐴 ∪ 𝐵 ) ) ) = ( ( { 𝑋 } ∪ ( 𝐴 ∪ 𝐵 ) ) ∪ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtval.1 | ⊢ 𝑋 = dom 𝑅 | |
| 2 | ordtval.2 | ⊢ 𝐴 = ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) | |
| 3 | ordtval.3 | ⊢ 𝐵 = ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) | |
| 4 | ordtval.4 | ⊢ 𝐶 = ran ( 𝑎 ∈ 𝑋 , 𝑏 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ( ¬ 𝑦 𝑅 𝑎 ∧ ¬ 𝑏 𝑅 𝑦 ) } ) | |
| 5 | snex | ⊢ { 𝑋 } ∈ V | |
| 6 | ssun2 | ⊢ ( 𝐴 ∪ 𝐵 ) ⊆ ( { 𝑋 } ∪ ( 𝐴 ∪ 𝐵 ) ) | |
| 7 | 1 2 3 | ordtuni | ⊢ ( 𝑅 ∈ TosetRel → 𝑋 = ∪ ( { 𝑋 } ∪ ( 𝐴 ∪ 𝐵 ) ) ) |
| 8 | dmexg | ⊢ ( 𝑅 ∈ TosetRel → dom 𝑅 ∈ V ) | |
| 9 | 1 8 | eqeltrid | ⊢ ( 𝑅 ∈ TosetRel → 𝑋 ∈ V ) |
| 10 | 7 9 | eqeltrrd | ⊢ ( 𝑅 ∈ TosetRel → ∪ ( { 𝑋 } ∪ ( 𝐴 ∪ 𝐵 ) ) ∈ V ) |
| 11 | uniexb | ⊢ ( ( { 𝑋 } ∪ ( 𝐴 ∪ 𝐵 ) ) ∈ V ↔ ∪ ( { 𝑋 } ∪ ( 𝐴 ∪ 𝐵 ) ) ∈ V ) | |
| 12 | 10 11 | sylibr | ⊢ ( 𝑅 ∈ TosetRel → ( { 𝑋 } ∪ ( 𝐴 ∪ 𝐵 ) ) ∈ V ) |
| 13 | ssexg | ⊢ ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( { 𝑋 } ∪ ( 𝐴 ∪ 𝐵 ) ) ∧ ( { 𝑋 } ∪ ( 𝐴 ∪ 𝐵 ) ) ∈ V ) → ( 𝐴 ∪ 𝐵 ) ∈ V ) | |
| 14 | 6 12 13 | sylancr | ⊢ ( 𝑅 ∈ TosetRel → ( 𝐴 ∪ 𝐵 ) ∈ V ) |
| 15 | elfiun | ⊢ ( ( { 𝑋 } ∈ V ∧ ( 𝐴 ∪ 𝐵 ) ∈ V ) → ( 𝑧 ∈ ( fi ‘ ( { 𝑋 } ∪ ( 𝐴 ∪ 𝐵 ) ) ) ↔ ( 𝑧 ∈ ( fi ‘ { 𝑋 } ) ∨ 𝑧 ∈ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) ∨ ∃ 𝑚 ∈ ( fi ‘ { 𝑋 } ) ∃ 𝑛 ∈ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) 𝑧 = ( 𝑚 ∩ 𝑛 ) ) ) ) | |
| 16 | 5 14 15 | sylancr | ⊢ ( 𝑅 ∈ TosetRel → ( 𝑧 ∈ ( fi ‘ ( { 𝑋 } ∪ ( 𝐴 ∪ 𝐵 ) ) ) ↔ ( 𝑧 ∈ ( fi ‘ { 𝑋 } ) ∨ 𝑧 ∈ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) ∨ ∃ 𝑚 ∈ ( fi ‘ { 𝑋 } ) ∃ 𝑛 ∈ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) 𝑧 = ( 𝑚 ∩ 𝑛 ) ) ) ) |
| 17 | fisn | ⊢ ( fi ‘ { 𝑋 } ) = { 𝑋 } | |
| 18 | ssun1 | ⊢ { 𝑋 } ⊆ ( { 𝑋 } ∪ ( ( 𝐴 ∪ 𝐵 ) ∪ 𝐶 ) ) | |
| 19 | 17 18 | eqsstri | ⊢ ( fi ‘ { 𝑋 } ) ⊆ ( { 𝑋 } ∪ ( ( 𝐴 ∪ 𝐵 ) ∪ 𝐶 ) ) |
| 20 | 19 | sseli | ⊢ ( 𝑧 ∈ ( fi ‘ { 𝑋 } ) → 𝑧 ∈ ( { 𝑋 } ∪ ( ( 𝐴 ∪ 𝐵 ) ∪ 𝐶 ) ) ) |
| 21 | 20 | a1i | ⊢ ( 𝑅 ∈ TosetRel → ( 𝑧 ∈ ( fi ‘ { 𝑋 } ) → 𝑧 ∈ ( { 𝑋 } ∪ ( ( 𝐴 ∪ 𝐵 ) ∪ 𝐶 ) ) ) ) |
| 22 | 1 2 3 4 | ordtbas2 | ⊢ ( 𝑅 ∈ TosetRel → ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( 𝐴 ∪ 𝐵 ) ∪ 𝐶 ) ) |
| 23 | ssun2 | ⊢ ( ( 𝐴 ∪ 𝐵 ) ∪ 𝐶 ) ⊆ ( { 𝑋 } ∪ ( ( 𝐴 ∪ 𝐵 ) ∪ 𝐶 ) ) | |
| 24 | 22 23 | eqsstrdi | ⊢ ( 𝑅 ∈ TosetRel → ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) ⊆ ( { 𝑋 } ∪ ( ( 𝐴 ∪ 𝐵 ) ∪ 𝐶 ) ) ) |
| 25 | 24 | sseld | ⊢ ( 𝑅 ∈ TosetRel → ( 𝑧 ∈ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) → 𝑧 ∈ ( { 𝑋 } ∪ ( ( 𝐴 ∪ 𝐵 ) ∪ 𝐶 ) ) ) ) |
| 26 | fipwuni | ⊢ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝒫 ∪ ( 𝐴 ∪ 𝐵 ) | |
| 27 | 26 | sseli | ⊢ ( 𝑛 ∈ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) → 𝑛 ∈ 𝒫 ∪ ( 𝐴 ∪ 𝐵 ) ) |
| 28 | 27 | elpwid | ⊢ ( 𝑛 ∈ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) → 𝑛 ⊆ ∪ ( 𝐴 ∪ 𝐵 ) ) |
| 29 | 28 | ad2antll | ⊢ ( ( 𝑅 ∈ TosetRel ∧ ( 𝑚 ∈ ( fi ‘ { 𝑋 } ) ∧ 𝑛 ∈ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) ) ) → 𝑛 ⊆ ∪ ( 𝐴 ∪ 𝐵 ) ) |
| 30 | 6 | unissi | ⊢ ∪ ( 𝐴 ∪ 𝐵 ) ⊆ ∪ ( { 𝑋 } ∪ ( 𝐴 ∪ 𝐵 ) ) |
| 31 | 30 7 | sseqtrrid | ⊢ ( 𝑅 ∈ TosetRel → ∪ ( 𝐴 ∪ 𝐵 ) ⊆ 𝑋 ) |
| 32 | 31 | adantr | ⊢ ( ( 𝑅 ∈ TosetRel ∧ ( 𝑚 ∈ ( fi ‘ { 𝑋 } ) ∧ 𝑛 ∈ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) ) ) → ∪ ( 𝐴 ∪ 𝐵 ) ⊆ 𝑋 ) |
| 33 | 29 32 | sstrd | ⊢ ( ( 𝑅 ∈ TosetRel ∧ ( 𝑚 ∈ ( fi ‘ { 𝑋 } ) ∧ 𝑛 ∈ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) ) ) → 𝑛 ⊆ 𝑋 ) |
| 34 | simprl | ⊢ ( ( 𝑅 ∈ TosetRel ∧ ( 𝑚 ∈ ( fi ‘ { 𝑋 } ) ∧ 𝑛 ∈ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) ) ) → 𝑚 ∈ ( fi ‘ { 𝑋 } ) ) | |
| 35 | 34 17 | eleqtrdi | ⊢ ( ( 𝑅 ∈ TosetRel ∧ ( 𝑚 ∈ ( fi ‘ { 𝑋 } ) ∧ 𝑛 ∈ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) ) ) → 𝑚 ∈ { 𝑋 } ) |
| 36 | elsni | ⊢ ( 𝑚 ∈ { 𝑋 } → 𝑚 = 𝑋 ) | |
| 37 | 35 36 | syl | ⊢ ( ( 𝑅 ∈ TosetRel ∧ ( 𝑚 ∈ ( fi ‘ { 𝑋 } ) ∧ 𝑛 ∈ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) ) ) → 𝑚 = 𝑋 ) |
| 38 | 33 37 | sseqtrrd | ⊢ ( ( 𝑅 ∈ TosetRel ∧ ( 𝑚 ∈ ( fi ‘ { 𝑋 } ) ∧ 𝑛 ∈ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) ) ) → 𝑛 ⊆ 𝑚 ) |
| 39 | sseqin2 | ⊢ ( 𝑛 ⊆ 𝑚 ↔ ( 𝑚 ∩ 𝑛 ) = 𝑛 ) | |
| 40 | 38 39 | sylib | ⊢ ( ( 𝑅 ∈ TosetRel ∧ ( 𝑚 ∈ ( fi ‘ { 𝑋 } ) ∧ 𝑛 ∈ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) ) ) → ( 𝑚 ∩ 𝑛 ) = 𝑛 ) |
| 41 | 24 | sselda | ⊢ ( ( 𝑅 ∈ TosetRel ∧ 𝑛 ∈ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) ) → 𝑛 ∈ ( { 𝑋 } ∪ ( ( 𝐴 ∪ 𝐵 ) ∪ 𝐶 ) ) ) |
| 42 | 41 | adantrl | ⊢ ( ( 𝑅 ∈ TosetRel ∧ ( 𝑚 ∈ ( fi ‘ { 𝑋 } ) ∧ 𝑛 ∈ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) ) ) → 𝑛 ∈ ( { 𝑋 } ∪ ( ( 𝐴 ∪ 𝐵 ) ∪ 𝐶 ) ) ) |
| 43 | 40 42 | eqeltrd | ⊢ ( ( 𝑅 ∈ TosetRel ∧ ( 𝑚 ∈ ( fi ‘ { 𝑋 } ) ∧ 𝑛 ∈ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) ) ) → ( 𝑚 ∩ 𝑛 ) ∈ ( { 𝑋 } ∪ ( ( 𝐴 ∪ 𝐵 ) ∪ 𝐶 ) ) ) |
| 44 | eleq1 | ⊢ ( 𝑧 = ( 𝑚 ∩ 𝑛 ) → ( 𝑧 ∈ ( { 𝑋 } ∪ ( ( 𝐴 ∪ 𝐵 ) ∪ 𝐶 ) ) ↔ ( 𝑚 ∩ 𝑛 ) ∈ ( { 𝑋 } ∪ ( ( 𝐴 ∪ 𝐵 ) ∪ 𝐶 ) ) ) ) | |
| 45 | 43 44 | syl5ibrcom | ⊢ ( ( 𝑅 ∈ TosetRel ∧ ( 𝑚 ∈ ( fi ‘ { 𝑋 } ) ∧ 𝑛 ∈ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) ) ) → ( 𝑧 = ( 𝑚 ∩ 𝑛 ) → 𝑧 ∈ ( { 𝑋 } ∪ ( ( 𝐴 ∪ 𝐵 ) ∪ 𝐶 ) ) ) ) |
| 46 | 45 | rexlimdvva | ⊢ ( 𝑅 ∈ TosetRel → ( ∃ 𝑚 ∈ ( fi ‘ { 𝑋 } ) ∃ 𝑛 ∈ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) 𝑧 = ( 𝑚 ∩ 𝑛 ) → 𝑧 ∈ ( { 𝑋 } ∪ ( ( 𝐴 ∪ 𝐵 ) ∪ 𝐶 ) ) ) ) |
| 47 | 21 25 46 | 3jaod | ⊢ ( 𝑅 ∈ TosetRel → ( ( 𝑧 ∈ ( fi ‘ { 𝑋 } ) ∨ 𝑧 ∈ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) ∨ ∃ 𝑚 ∈ ( fi ‘ { 𝑋 } ) ∃ 𝑛 ∈ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) 𝑧 = ( 𝑚 ∩ 𝑛 ) ) → 𝑧 ∈ ( { 𝑋 } ∪ ( ( 𝐴 ∪ 𝐵 ) ∪ 𝐶 ) ) ) ) |
| 48 | 16 47 | sylbid | ⊢ ( 𝑅 ∈ TosetRel → ( 𝑧 ∈ ( fi ‘ ( { 𝑋 } ∪ ( 𝐴 ∪ 𝐵 ) ) ) → 𝑧 ∈ ( { 𝑋 } ∪ ( ( 𝐴 ∪ 𝐵 ) ∪ 𝐶 ) ) ) ) |
| 49 | 48 | ssrdv | ⊢ ( 𝑅 ∈ TosetRel → ( fi ‘ ( { 𝑋 } ∪ ( 𝐴 ∪ 𝐵 ) ) ) ⊆ ( { 𝑋 } ∪ ( ( 𝐴 ∪ 𝐵 ) ∪ 𝐶 ) ) ) |
| 50 | ssfii | ⊢ ( ( { 𝑋 } ∪ ( 𝐴 ∪ 𝐵 ) ) ∈ V → ( { 𝑋 } ∪ ( 𝐴 ∪ 𝐵 ) ) ⊆ ( fi ‘ ( { 𝑋 } ∪ ( 𝐴 ∪ 𝐵 ) ) ) ) | |
| 51 | 12 50 | syl | ⊢ ( 𝑅 ∈ TosetRel → ( { 𝑋 } ∪ ( 𝐴 ∪ 𝐵 ) ) ⊆ ( fi ‘ ( { 𝑋 } ∪ ( 𝐴 ∪ 𝐵 ) ) ) ) |
| 52 | 51 | unssad | ⊢ ( 𝑅 ∈ TosetRel → { 𝑋 } ⊆ ( fi ‘ ( { 𝑋 } ∪ ( 𝐴 ∪ 𝐵 ) ) ) ) |
| 53 | fiss | ⊢ ( ( ( { 𝑋 } ∪ ( 𝐴 ∪ 𝐵 ) ) ∈ V ∧ ( 𝐴 ∪ 𝐵 ) ⊆ ( { 𝑋 } ∪ ( 𝐴 ∪ 𝐵 ) ) ) → ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) ⊆ ( fi ‘ ( { 𝑋 } ∪ ( 𝐴 ∪ 𝐵 ) ) ) ) | |
| 54 | 12 6 53 | sylancl | ⊢ ( 𝑅 ∈ TosetRel → ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) ⊆ ( fi ‘ ( { 𝑋 } ∪ ( 𝐴 ∪ 𝐵 ) ) ) ) |
| 55 | 22 54 | eqsstrrd | ⊢ ( 𝑅 ∈ TosetRel → ( ( 𝐴 ∪ 𝐵 ) ∪ 𝐶 ) ⊆ ( fi ‘ ( { 𝑋 } ∪ ( 𝐴 ∪ 𝐵 ) ) ) ) |
| 56 | 52 55 | unssd | ⊢ ( 𝑅 ∈ TosetRel → ( { 𝑋 } ∪ ( ( 𝐴 ∪ 𝐵 ) ∪ 𝐶 ) ) ⊆ ( fi ‘ ( { 𝑋 } ∪ ( 𝐴 ∪ 𝐵 ) ) ) ) |
| 57 | 49 56 | eqssd | ⊢ ( 𝑅 ∈ TosetRel → ( fi ‘ ( { 𝑋 } ∪ ( 𝐴 ∪ 𝐵 ) ) ) = ( { 𝑋 } ∪ ( ( 𝐴 ∪ 𝐵 ) ∪ 𝐶 ) ) ) |
| 58 | unass | ⊢ ( ( { 𝑋 } ∪ ( 𝐴 ∪ 𝐵 ) ) ∪ 𝐶 ) = ( { 𝑋 } ∪ ( ( 𝐴 ∪ 𝐵 ) ∪ 𝐶 ) ) | |
| 59 | 57 58 | eqtr4di | ⊢ ( 𝑅 ∈ TosetRel → ( fi ‘ ( { 𝑋 } ∪ ( 𝐴 ∪ 𝐵 ) ) ) = ( ( { 𝑋 } ∪ ( 𝐴 ∪ 𝐵 ) ) ∪ 𝐶 ) ) |